1
|
Wang SD, Liu Y, Ma TM, Li XN, He SG. Factors Determining the Selectivity of NO Reduction Catalyzed by Copper-Vanadium Oxide Cluster Anions Cu 2VO 3-5. Chemphyschem 2025; 26:e202400888. [PMID: 39377742 DOI: 10.1002/cphc.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Catalytic NO reduction by CO is imperative to satisfy the increasingly rigorous emission regulations. Identifying the structural characteristic of crucial intermediate that governs the selectivity of NO reduction is pivotal to having a fundamental understanding on real-life catalysis. Herein, benefiting from the state-of-the-art mass spectrometry, we demonstrated experimentally that the Cu2VO3-5 - clusters can mediate the catalysis of NO reduction by CO, and two competitive channels to generate N2O and N2 can co-exist. Quantum-chemical calculations were performed to rationalize this selectivity. The formation of the ONNO unit on the Cu2 dimer was demonstrated to be a precursor from which two pathways of NO reduction start to emerge. In the pathway of N2O generation, only the Cu2 dimer was oxidized and the VO3 moiety functions as a "support", while both moieties have to contribute to anchor oxygen atoms from the ONNO unit and then N2 can be generated. This finding displays a clear picture to elucidate how and why the involvement of VO3 "support" can regulate the selectivity of NO reduction.
Collapse
Affiliation(s)
- Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- China School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yi Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Sun XY, Wang SD, Chen JY, Ma TM, He SG, Li XN. Catalytic Conversion of NO and CO by Noble-Metal-Free Copper-Vanadium Oxide Cluster Anions CuVO 3,4. J Phys Chem Lett 2024; 15:9043-9050. [PMID: 39194150 DOI: 10.1021/acs.jpclett.4c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Herein, by using state-of-the-art mass spectrometry, we demonstrated experimentally that the bimetallic copper-vanadium oxide cluster anions CuVO3,4- can catalyze the reduction of NO by CO into N2O and CO2. Note that the catalysis of NO reduction by CO has been rarely established in the gas phase and noble-metal containing clusters were commonly emphasized. Benefiting from quantum-chemical calculations, the Cu-V synergistic effect that both metal atoms work energetically to favor NO adsorption, N-N coupling, and CO oxidation by facilitating electron transfer can be understood at a strictly molecular level. Theoretical results demonstrated that the precaptured NO molecule encourages the adsorption of the second NO by electron donation. This finding deepens our understanding on NO reduction that NO functions not only as a reactant but also as a promoter during the reactions. This discovery could be helpful to permeate the nature and mechanism of active sites on related copper-vanadium heterogeneous catalyst used in real-life NO reduction.
Collapse
Affiliation(s)
- Xin-Yue Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Jin-You Chen
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
3
|
Wang SD, Ma TM, Li XN, He SG. CO Oxidation Promoted by NO Adsorption on RhMn 2O 3- Cluster Anions. J Phys Chem A 2024; 128:738-746. [PMID: 38236743 DOI: 10.1021/acs.jpca.3c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.
Collapse
Affiliation(s)
- Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Muman V, Tennyson-Davies A, Allegret O, Addicoat MA. Reactions of N 2O and CO on neutral Rh 10O n clusters: a density functional study. Phys Chem Chem Phys 2024; 26:2218-2227. [PMID: 38165015 DOI: 10.1039/d3cp04929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Density functional theory calculations were performed to identify product, reactant and intermediate dissociative/associative structures for the oxygen abstraction and addition reactions: Rh10On + CO → Rh10On-1 + CO2, n = 1-5 and Rh10On + N2O → Rh10On+1 + N2, n = 0-4 reactions. In the case of the oxygen abstraction reactions, the energetics of the reaction path were very similar in energy regardless of the number of oxygen atoms on the Rh10On cluster, whereas for the addition of oxygen to the Rh10On cluster, the reaction was found to become significantly less exothermic with each successive addition of oxygen.
Collapse
Affiliation(s)
- Vikram Muman
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Alex Tennyson-Davies
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Oihan Allegret
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- Univ Limoges, IRCER, UMR CNRS 7315, F-87068 Limoges, France
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
5
|
Chen JJ, Wang SD, Li ZY, Li XN, He SG. Selective Reduction of NO into N 2 Catalyzed by Rh 1-Doped Cluster Anions RhCe 2O 3-5. J Am Chem Soc 2023; 145:18658-18667. [PMID: 37572057 DOI: 10.1021/jacs.3c06565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Catalytic conversion of toxic nitrogen oxide (NO) and carbon monoxide (CO) into nitrogen (N2) and carbon dioxide (CO2) is imperative under the weight of the increasingly stringent emission regulations, while a fundamental understanding of the nature of the active site to selectively drive N2 generation is elusive. Herein, in combination with state-of-the-art mass-spectrometric experiments and quantum-chemical calculations, we demonstrated that the rhodium-cerium oxide clusters RhCe2O3-5- can catalytically drive NO reduction by CO and give rise to N2 and CO2. This finding represents a sharp improvement in cluster science where N2O is commonly produced in the rarely established examples of catalytic NO reduction mediated with gas-phase clusters. We demonstrated the importance of the unique chemical environment in the RhCe2O3- cluster to guide the substantially improved N2 selectivity: a triatomic Lewis "acid-base-acid" Ceδ+-Rhδ--Ceδ+ site is proposed to strongly adsorb two NO molecules as well as the N2O intermediate that is attached on the Rh atom and can facilely dissociate to form N2 assisted by both Ce atoms.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Wang SD, Chen JJ, Ma TM, Li XN, He SG. Catalytic NO Reduction by Noble-Metal-Free Vanadium-Aluminum Oxide Cluster Anions. J Phys Chem Lett 2023; 14:4388-4393. [PMID: 37140362 DOI: 10.1021/acs.jpclett.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
By using state-of-the-art mass spectrometry and guided by the newly discovered single-electron mechanism (SEM; e.g., Ti3+ + 2NO → Ti4+-O•- + N2O), we determined experimentally that the vanadium-aluminum oxide clusters V4-xAlxO10-x- (x = 1-3) can catalyze the reduction of NO by CO and substantiated theoretically that the SEM still prevails in driving the catalysis. This finding marks an important step in cluster science in which a noble metal had been demonstrated to be indispensable in NO activation mediated by heteronuclear metal clusters. The results provide new insights into the SEM in which active V-Al cooperative communication favors the transfer of an unpaired electron from the V atom to NO attached to the Al atom on which the reduction reaction actually takes place. This study provides a clear picture for improving our understanding of related heterogeneous catalysis, and the electron hopping behavior induced by NO adsorption could be a fundamental chemistry for driving NO reduction.
Collapse
Affiliation(s)
- Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
7
|
Tatsukawa K, Nagata T, Yamaguchi M, Miyajima K, Mafuné F. Reduction of Nitric Oxide Adsorbed on Iridium Cluster Cations at High Temperatures. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|