1
|
Padilla S, Prado R, Anitua E. An evolutionary history of F12 gene: Emergence, loss, and vulnerability with the environment as a driver. Bioessays 2023; 45:e2300077. [PMID: 37750435 DOI: 10.1002/bies.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.
Collapse
Affiliation(s)
- Sabino Padilla
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
2
|
Analysis of risk factors associated with gas embolism and evaluation of predictors of mortality in 482 loggerhead sea turtles. Sci Rep 2021; 11:22693. [PMID: 34811412 PMCID: PMC8608947 DOI: 10.1038/s41598-021-02017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Sea turtles that are entrapped in static and towed nets may develop gas embolism which can lead to severe organ injury and death. Trawling characteristics, physical and physiologic factors associated with gas-embolism and predictors of mortality were analysed from 482 bycaught loggerheads. We found 204 turtles affected by gas-embolism and significant positive correlations between the presence of gas-embolism and duration, depth, ascent rate of trawl, turtle size and temperature, and between mortality and ascent time, neurological deficits, significant acidosis and involvement of > 12 cardiovascular sites and the left atrium and sinus venosus-right atrium. About 90% turtles with GE alive upon arrival at Sea Turtle Clinic recovered from the disease without any supportive drug therapy. Results of this study may be useful in clinical evaluation, prognostication, and management for turtles affected by gas-embolism, but bycatch reduction must become a priority for major international organizations. According to the results of the present study the measures to be considered to reduce the catches or mortality of sea turtles for trawling are to be found in the modification of fishing nets or fishing operations and in greater awareness and education of fishermen.
Collapse
|
3
|
McCulloch PF, Gebhart BW, Schroer JA. Large Lung Volumes Delay the Onset of the Physiological Breaking Point During Simulated Diving. Front Physiol 2021; 12:731633. [PMID: 34658915 PMCID: PMC8511405 DOI: 10.3389/fphys.2021.731633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
During breath holding after face immersion there develops an urge to breathe. The point that would initiate the termination of the breath hold, the "physiological breaking point," is thought to be primarily due to changes in blood gases. However, we theorized that other factors, such as lung volume, also contributes significantly to terminating breath holds during face immersion. Accordingly, nine naïve subjects (controls) and seven underwater hockey players (divers) voluntarily initiated face immersions in room temperature water at Total Lung Capacity (TLC) and Functional Residual Capacity (FRC) after pre-breathing air, 100% O2, 15% O2 / 85% N2, or 5% CO2 / 95% O2. Heart rate (HR), arterial blood pressure (BP), end-tidal CO2 (etCO2), and breath hold durations (BHD) were monitored during all face immersions. The decrease in HR and increase in BP were not significantly different at the two lung volumes, although the increase in BP was usually greater at FRC. BHD was significantly longer at TLC (54 ± 2 s) than at FRC (30 ± 2 s). Also, with each pre-breathed gas BHD was always longer at TLC. We found no consistent etCO2 at which the breath holding terminated. BDHs were significantly longer in divers than in controls. We suggest that during breath holding with face immersion high lung volume acts directly within the brainstem to actively delay the attainment of the physiological breaking point, rather than acting indirectly as a sink to produce a slower build-up of PCO2.
Collapse
Affiliation(s)
- Paul F. McCulloch
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - B. W. Gebhart
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - J. A. Schroer
- Physical Therapy Program, College of Health Sciences, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
4
|
Patrician A, Dujić Ž, Spajić B, Drviš I, Ainslie PN. Breath-Hold Diving - The Physiology of Diving Deep and Returning. Front Physiol 2021; 12:639377. [PMID: 34093221 PMCID: PMC8176094 DOI: 10.3389/fphys.2021.639377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Breath-hold diving involves highly integrative physiology and extreme responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure. With astonishing depth records exceeding 100 m, and up to 214 m on a single breath, the human capacity for deep breath-hold diving continues to refute expectations. The physiological challenges and responses occurring during a deep dive highlight the coordinated interplay of oxygen conservation, exercise economy, and hyperbaric management. In this review, the physiology of deep diving is portrayed as it occurs across the phases of a dive: the first 20 m; passive descent; maximal depth; ascent; last 10 m, and surfacing. The acute risks of diving (i.e., pulmonary barotrauma, nitrogen narcosis, and decompression sickness) and the potential long-term medical consequences to breath-hold diving are summarized, and an emphasis on future areas of research of this unique field of physiological adaptation are provided.
Collapse
Affiliation(s)
- Alexander Patrician
- Center for Heart, Lung & Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Boris Spajić
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Ivan Drviš
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Philip N Ainslie
- Center for Heart, Lung & Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
5
|
Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Front Genet 2017; 8:205. [PMID: 29270192 PMCID: PMC5725996 DOI: 10.3389/fgene.2017.00205] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/24/2017] [Indexed: 01/26/2023] Open
Abstract
Animals that are able to sustain life under hypoxic conditions have long captured the imagination of biologists and medical practitioners alike. Although the associated morphological modifications have been extensively described, the mechanisms underlying the evolution of hypoxia tolerance are not well understood. To provide such insights, we investigated genes in four major energy metabolism pathways, and provide evidence of distinct evolutionary paths to mammalian hypoxia-tolerance. Positive selection of genes in the oxidative phosphorylation pathway mainly occurred in terrestrial hypoxia-tolerant species; possible adaptations to chronically hypoxic environments. The strongest candidate for positive selection along cetacean lineages was the citrate cycle signaling pathway, suggestive of enhanced aerobic metabolism during and after a dive. Six genes with cetacean-specific amino acid changes are rate-limiting enzymes involved in the gluconeogenesis pathway, which would be expected to enhance the lactate removal after diving. Intriguingly, 38 parallel amino acid substitutions in 29 genes were observed between hypoxia-tolerant mammals. Of these, 76.3% were radical amino acid changes, suggesting that convergent molecular evolution drives the adaptation to hypoxic stress and similar phenotypic changes. This study provides further insights into life under low oxygen conditions and the evolutionary trajectories of hypoxia-tolerant species.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanzhi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Comparative and Endocrine Biology Laboratory, Translational Research Institute–Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Golanov EV, Regnier-Golanov AS, Britz GW. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning. Brain Sci 2017; 7:E121. [PMID: 28934119 PMCID: PMC5664048 DOI: 10.3390/brainsci7100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023] Open
Abstract
Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN) renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO) global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1) hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS)-injected) animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as "diving response".
Collapse
Affiliation(s)
- Eugene V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Angelique S Regnier-Golanov
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Franco-Trecu V, García-Olazábal MD, Tassino B, Acevedo J. Parturition process in an amphibian mammal species: new evidences in South American fur seal (Arctocephalus australis). ANIM BIOL 2016. [DOI: 10.1163/15707563-00002484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, the transition from a terrestrial to an aquatic environment has implied a great number of adaptations. While in terrestrial mammals the presentation of the foetus at birth is typically cephalic, in strictly aquatic mammals as cetaceans and sirenians the presentation of the foetus is mainly breech. The order Pinnipedia is the most recently evolved group of marine mammals and has an amphibian lifestyle. We document, for the first time, the parturition process in the largest breeding colony of the South American fur seal Arctocephalus australis in Uruguay and compare our results with the scarce information available for other species. The analysis of the parturition processes shows that the cephalic/breech birth ratio was 1. In this species, the presentation of the foetus did not affect the total duration of the parturition process, but the cephalic presentation implied a significantly lower duration of the stage 1 of birth, a trend that is also observed in other Otariid species. Phylogenetic reconstructions suggest that O. flavescens and E. jubatus are older than the Arctocephalus genus, having their most recent common ancestor dated between 5-5.8 mybp. Within the Arctocephalus genus, A. australis would be the most recent species (0.7 mybp). In this light, the skewed ratios of breech presentation in older otariids species may suggest a convergent adaptation toward the aquatic life. We hope this finding will promote an increase of studies aiming for a more detailed examination on the adaptive processes involved in the selection of both types of fetal presentations, and their potential effect on the survival of the pup.
Collapse
Affiliation(s)
- Valentina Franco-Trecu
- Departamento de Ecología & Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Proyecto Pinnípedos, Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Mateo D. García-Olazábal
- Departamento de Ecología & Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Bettina Tassino
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Jorge Acevedo
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (Fundación CEQUA), 21 de Mayo #1690, Punta Arenas, Chile
| |
Collapse
|
8
|
García-Párraga D, Crespo-Picazo JL, de Quirós YB, Cervera V, Martí-Bonmati L, Díaz-Delgado J, Arbelo M, Moore MJ, Jepson PD, Fernández A. Decompression sickness ('the bends') in sea turtles. DISEASES OF AQUATIC ORGANISMS 2014; 111:191-205. [PMID: 25320032 DOI: 10.3354/dao02790] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, sea turtles manage gas exchange and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In sea turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead sea turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in sea turtles opens a new era for research in sea turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other air-breathing marine vertebrates and human divers.
Collapse
Affiliation(s)
- D García-Párraga
- Oceanografic, Veterinary Services, Parques Reunidos Valencia, Ciudad de las Artes y las Ciencias, C/ Eduardo Primo Yúfera 1B, 46013 Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 2013; 184:23-53. [DOI: 10.1007/s00360-013-0782-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 11/26/2022]
|
10
|
Ponganis P. AFTER 73 YEARS, STILL THE FOUNDATION OF DIVING PHYSIOLOGY RESEARCH. J Exp Biol 2013; 216:3381-3. [DOI: 10.1242/jeb.076455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|