1
|
Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications. Adv Healthc Mater 2024; 13:e2303419. [PMID: 38686434 PMCID: PMC11338730 DOI: 10.1002/adhm.202303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ninghao Zhu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Zhao J, Zhang H, Ling Z, An Z, Xiao S, Wang P, Fu Z, Shao J, Sun Y, Fu W. A bilayer bioengineered patch with sequential dual-growth factor release to promote vascularization in bladder reconstruction. Regen Biomater 2024; 11:rbae083. [PMID: 39077683 PMCID: PMC11286312 DOI: 10.1093/rb/rbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Bladder tissue engineering holds promise for addressing bladder defects resulting from congenital or acquired bladder diseases. However, inadequate vascularization significantly impacts the survival and function of engineered tissues after transplantation. Herein, a novel bilayer silk fibroin (BSF) scaffold was fabricated with the capability of vascular endothelial growth factor (VEGF) and platelet derived growth factor-BB (PDGF-BB) sequential release. The outer layer of the scaffold was composed of compact SF film with waterproofness to mimic the serosa of the bladder. The inner layer was constructed of porous SF matrix incorporated with SF microspheres (MS) loaded with VEGF and PDGF-BB. We found that the 5% (w/v) MS-incorporated scaffold exhibited a rapid release of VEGF, whereas the 0.2% (w/v) MS-incorporated scaffold demonstrated a slow and sustained release of PDGF-BB. The BSF scaffold exhibited good biocompatibility and promoted endothelial cell migration, tube formation and enhanced endothelial differentiation of adipose derived stem cells (ADSCs) in vitro. The BSF patch was constructed by seeding ADSCs on the BSF scaffold. After in vivo transplantation, not only could the BSF patch facilitate the regeneration of urothelium and smooth muscle, but more importantly, stimulate the regeneration of blood vessels. This study demonstrated that the BSF patch exhibited excellent vascularization capability in bladder reconstruction and offered a viable functional bioengineered patch for future clinical studies.
Collapse
Affiliation(s)
- Jian Zhao
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- Department of Urology, 960th Hospital of PLA, Jinan 250031, China
| | - Haoqian Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ziyan An
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing 100142, China
| | - Pengchao Wang
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Zhouyang Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Jinpeng Shao
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Yanfeng Sun
- Department of Pediatrics, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Weijun Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| |
Collapse
|
3
|
Crnic A, Rohringer S, Tyschuk T, Holnthoner W. Engineering blood and lymphatic microvascular networks. Atherosclerosis 2024; 393:117458. [PMID: 38320921 DOI: 10.1016/j.atherosclerosis.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The human vasculature plays a crucial role in the blood supply of nearly all organs as well as the drainage of the interstitial fluid. Consequently, if these physiological systems go awry, pathological changes might occur. Hence, the regeneration of existing vessels, as well as approaches to engineer artificial blood and lymphatic structures represent current challenges within the field of vascular research. In this review, we provide an overview of both the vascular blood circulation and the long-time neglected but equally important lymphatic system, with regard to their organotypic vasculature. We summarize the current knowledge within the field of vascular tissue engineering focusing on the design of co-culture systems, thereby mainly discussing suitable cell types, scaffold design and disease models. This review will mainly focus on addressing those subjects concerning atherosclerosis. Moreover, current technological approaches such as vascular organ-on-a-chip models and microfluidic devices will be discussed.
Collapse
Affiliation(s)
- Aldina Crnic
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1020 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria
| | - Sabrina Rohringer
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Tatiana Tyschuk
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1020 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1020 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria.
| |
Collapse
|
4
|
Zhang Z, Xu C, Xu L, Wan J, Cao G, Liu Z, Ji P, Jin Q, Fu Y, Le Y, Ju J, Hou R, Zhang G. Bioprinted dermis with human adipose tissue-derived microvascular fragments promotes wound healing. Biotechnol Bioeng 2024; 121:1407-1421. [PMID: 37876343 DOI: 10.1002/bit.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Tissue-engineered skin is an effective material for treating large skin defects in a clinical setting. However, its use is limited owing to vascular complications. Human adipose tissue-derived microvascular fragments (HaMVFs) are vascularized units that form vascular networks by rapid reassembly. In this study, we designed a vascularized bionic skin tissue using a three-dimensional (3D) bioprinter of HaMVFs and human fibroblasts encapsulated in a hybrid hydrogel composed of GelMA, HAMA, and fibrinogen. Tissues incorporating HaMVFs showed good in vitro vascularization and mechanical properties after UV crosslinking and thrombin exposure. Thus, the tissue could be sutured appropriately to the wound. In vivo, the vascularized 3D bioprinted skin promoted epidermal regeneration, collagen maturation in the dermal tissue, and vascularization of the skin tissue to accelerate wound healing. Overall, vascularized 3D bioprinted skin with HaMVFs is an effective material for treating skin defects and may be clinically applicable to reduce the necrosis rate of skin grafts.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Jiaming Wan
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
- Department of Orthopaedics, Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Pengxiang Ji
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Li H, Shang Y, Zeng J, Matsusaki M. Technology for the formation of engineered microvascular network models and their biomedical applications. NANO CONVERGENCE 2024; 11:10. [PMID: 38430377 PMCID: PMC10908775 DOI: 10.1186/s40580-024-00416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Tissue engineering and regenerative medicine have made great progress in recent decades, as the fields of bioengineering, materials science, and stem cell biology have converged, allowing tissue engineers to replicate the structure and function of various levels of the vascular tree. Nonetheless, the lack of a fully functional vascular system to efficiently supply oxygen and nutrients has hindered the clinical application of bioengineered tissues for transplantation. To investigate vascular biology, drug transport, disease progression, and vascularization of engineered tissues for regenerative medicine, we have analyzed different approaches for designing microvascular networks to create models. This review discusses recent advances in the field of microvascular tissue engineering, explores potential future challenges, and offers methodological recommendations.
Collapse
Affiliation(s)
- He Li
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
6
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
7
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
9
|
Dasgupta S, Gope A, Mukhopadhyay A, Kumar P, Chatterjee J, Barui A. Chitosan-collagen-fibrinogen uncrosslinked scaffolds possessing skin regeneration and vascularization potential. J Biomed Mater Res A 2023; 111:725-739. [PMID: 36573698 DOI: 10.1002/jbm.a.37488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Clinical success of regenerative medicine for treating deep-tissue skin injuries depends on the availability of skin grafts. Though bioengineered constructs are tested clinically, lack of neovascularization provide only superficial healing. Thus constructs, which promotes wound healing and supports vascularization has gained priority in tissue engineering. In this study, chitosan-collagen-fibrinogen (CCF) scaffold was fabricated using freeze-drying method without using any chemical crosslinkers. CCF scaffolds proved cytocompatibility and faster healing in in vitro scratch assay of primary human adult dermal fibroblasts cells with progressively increasing vascular endothelial growth factor-A and reducing vascular endothelial growth factor receptor 1 expressions. Skin regeneration evaluated on in vivo full thickness wound model confirmed faster remodeling with angiogenic signatures in CCF scaffold-implanted mice. Histopathological observations corroborated with stereo-zoom and SS-optical coherence tomography images of wound sites to prove the maturation of healing-bed, after 12 days of CCF implantation. Therefore, it is concluded that CCF scaffolds are promising for skin tissue regeneration and demonstrates pro-angiogenic potential.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ayan Gope
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Anurup Mukhopadhyay
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Prashant Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
10
|
Wan HY, Chen JCH, Xiao Q, Wong CW, Yang B, Cao B, Tuan RS, Nilsson SK, Ho YP, Raghunath M, Kamm RD, Blocki A. Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding. Biomater Res 2023; 27:32. [PMID: 37076899 PMCID: PMC10116810 DOI: 10.1186/s40824-023-00375-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND There is great interest to engineer in vitro models that allow the study of complex biological processes of the microvasculature with high spatiotemporal resolution. Microfluidic systems are currently used to engineer microvasculature in vitro, which consists of perfusable microvascular networks (MVNs). These are formed through spontaneous vasculogenesis and exhibit the closest resemblance to physiological microvasculature. Unfortunately, under standard culture conditions and in the absence of co-culture with auxiliary cells as well as protease inhibitors, pure MVNs suffer from a short-lived stability. METHODS Herein, we introduce a strategy for stabilization of MVNs through macromolecular crowding (MMC) based on a previously established mixture of Ficoll macromolecules. The biophysical principle of MMC is based on macromolecules occupying space, thus increasing the effective concentration of other components and thereby accelerating various biological processes, such as extracellular matrix deposition. We thus hypothesized that MMC will promote the accumulation of vascular ECM (basement membrane) components and lead to a stabilization of MVN with improved functionality. RESULTS MMC promoted the enrichment of cellular junctions and basement membrane components, while reducing cellular contractility. The resulting advantageous balance of adhesive forces over cellular tension resulted in a significant stabilization of MVNs over time, as well as improved vascular barrier function, closely resembling that of in vivo microvasculature. CONCLUSION Application of MMC to MVNs in microfluidic devices provides a reliable, flexible and versatile approach to stabilize engineered microvessels under simulated physiological conditions.
Collapse
Affiliation(s)
- Ho-Ying Wan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jack Chun Hin Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy Wingtung Wong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Boguang Yang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Susan K Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Yi-Ping Ho
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael Raghunath
- Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Roger D Kamm
- Department of Biology and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
11
|
Asiyabi MM, Vahidi B. In silico analysis of a hierarchical microfluidic vascular network: Detecting the location of angiogenic sprouting. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3654. [PMID: 36209469 DOI: 10.1002/cnm.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/30/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Lack of oxygen is one of the leading causes of failure in engineered tissue. Therefore, angiogenesis will be necessary for the survival of larger tissues in vivo. In addition, a proper lymphatic system that plays an essential role in relieving inflammation and maintaining tissue homeostasis is of great importance for tissue regeneration and repair. Many biomechanical parameters are involved in controlling angiogenesis and capillary network generation, which are challenging to study and control in experimental studies or in vitro. In the present study, using numerical modeling, the effect of various geometric and biomechanical parameters in creating suitable conditions for angiogenesis was investigated. Furthermore, sprouting points were predicted using flow dynamics. For this purpose, a porous scaffold, flow channels with parametric geometry that followed Murray's law, and a drainage channel were considered. Results suggested that the geometry of the microfluidic channels and the characteristics of the vessel wall and scaffold plays a complementary role in determining the transmural pressure. It was found that a twofold increase in the vascular hydraulic conductivity can reduce the minimum transmural pressure by up to 28% and increase the drainage flow rate by 44%. In addition, the minimum magnitude of transmural pressure tends to zero for scaffold's hydraulic conductivity values smaller than 10-11 m3 s kg-1 . The results of this study can be used in optimizing the design of the relevant microfluidic systems to induce angiogenesis and avoid leakage in the constructed implantable tissue.
Collapse
Affiliation(s)
- Milad Mahdinezhad Asiyabi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Masson-Meyers DS, Bertassoni LE, Tayebi L. Oral mucosa equivalents, prevascularization approaches, and potential applications. Connect Tissue Res 2022; 63:514-529. [PMID: 35132918 PMCID: PMC9357199 DOI: 10.1080/03008207.2022.2035375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
Collapse
Affiliation(s)
| | - Luiz E. Bertassoni
- School of Dentistry, Oregon Health and Science University. Portland, OR 97201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry. Milwaukee, WI 53233, USA
| |
Collapse
|
13
|
Guan Y, Liu J, Gu Y, Ji X. Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages? Aging Dis 2022; 14:370-385. [PMID: 37008044 PMCID: PMC10017152 DOI: 10.14336/ad.2022.0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular microcirculation is essential for maintaining the physiological functions of the brain. The brain can be protected from stress injury by remodeling the microcirculation network. Angiogenesis is a type of cerebral vascular remodeling. It is an effective approach to improve the blood flow of the cerebral microcirculation, which is necessary for preventing and treating various neurological disorders. Hypoxia is one of the most important regulators of angiogenesis, affecting the sprouting, proliferation, and maturation stages of angiogenesis. Moreover, hypoxia negatively affects cerebral vascular tissue by impairing the structural and functional integrity of the blood-brain barrier and vascular-nerve decoupling. Therefore, hypoxia has a dual effect on blood vessels and is affected by confounding factors including oxygen concentration, hypoxia duration, and hypoxia frequency and extent. Establishing an optimal model that promotes cerebral microvasculogenesis without causing vascular injury is essential. In this review, we first elaborate on the effects of hypoxia on blood vessels from two different perspectives: (1) the promotion of angiogenesis and (2) cerebral microcirculation damage. We further discuss the factors influencing the dual role of hypoxia and emphasize the benefits of moderate hypoxic irritation and its potential application as an easy, safe, and effective treatment for multiple nervous system disorders.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Prof. Xunming Ji; Beijing Institute of Brain Disorders, Capital Medical University, 10 Xi Tou Tiao, You Anmen, Beijing 100069, China. E-mail: .
| |
Collapse
|
14
|
Qavi I, Tan GZ. Near-field electrospinning polycaprolactone microfibers to mimic arteriole-capillary-venule structure. Prog Biomater 2021; 10:223-233. [PMID: 34553343 DOI: 10.1007/s40204-021-00165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022] Open
Abstract
The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.
Collapse
Affiliation(s)
- Imtiaz Qavi
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, USA
| | - George Z Tan
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, USA.
| |
Collapse
|
15
|
Abstract
Microengineering advances have enabled the development of perfusable, endothelialized models of the microvasculature that recapitulate the unique biological and biophysical conditions of the microcirculation in vivo. Indeed, at that size scale (<100 μm)-where blood no longer behaves as a simple continuum fluid; blood cells approximate the size of the vessels themselves; and complex interactions among blood cells, plasma molecules, and the endothelium constantly ensue-vascularized microfluidics are ideal tools to investigate these microvascular phenomena. Moreover, perfusable, endothelialized microfluidics offer unique opportunities for investigating microvascular diseases by enabling systematic dissection of both the blood and vascular components of the pathophysiology at hand. We review (a) the state of the art in microvascular devices and (b) the myriad of microvascular diseases and pressing challenges. The engineering community has unique opportunities to innovate with new microvascular devices and to partner with biomedical researchers to usher in a new era of understanding and discovery of microvascular diseases.
Collapse
Affiliation(s)
- David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA; ,
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA; ,
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021; 15:747-762. [PMID: 34058083 DOI: 10.1002/term.3225] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Insufficient vascularization during tissue repair is often associated with poor clinical outcomes. This is a concern especially when patients have critical-sized injuries, where the size of the defect restricts vascularity, or even in small defects that have to be treated under special conditions, such as after radiation therapy (relevant to tumor resection) that hinders vascularity. In fact, poor vascularization is one of the major obstacles for clinical application of tissue engineering methods in soft tissue repair. As a key issue, lack of graft integration, caused by inadequate vascularization after implantation, can lead to graft failure. Moreover, poor vascularization compromises the viability of cells seeded in deep portions of scaffolds/graft materials, due to hypoxia and insufficient nutrient supply. In this article we aim to review vascularization strategies employed in tissue engineering techniques to repair soft tissues. For this purpose, we start by providing a brief overview of the main events during the physiological wound healing process in soft tissues. Then, we discuss how tissue repair can be achieved through tissue engineering, and considerations with regards to the choice of scaffold materials, culture conditions, and vascularization techniques. Next, we highlight the importance of vascularization, along with strategies and methods of prevascularization of soft tissue equivalents, particularly cell-based prevascularization. Lastly, we present a summary of commonly used in vitro methods during the vascularization of tissue-engineered soft tissue constructs.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
17
|
Vajda J, Milojević M, Maver U, Vihar B. Microvascular Tissue Engineering-A Review. Biomedicines 2021; 9:589. [PMID: 34064101 PMCID: PMC8224375 DOI: 10.3390/biomedicines9060589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue engineering and regenerative medicine have come a long way in recent decades, but the lack of functioning vasculature is still a major obstacle preventing the development of thicker, physiologically relevant tissue constructs. A large part of this obstacle lies in the development of the vessels on a microscale-the microvasculature-that are crucial for oxygen and nutrient delivery. In this review, we present the state of the art in the field of microvascular tissue engineering and demonstrate the challenges for future research in various sections of the field. Finally, we illustrate the potential strategies for addressing some of those challenges.
Collapse
Affiliation(s)
- Jernej Vajda
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
| | - Marko Milojević
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Boštjan Vihar
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.V.); (M.M.)
- IRNAS Ltd., Limbuška cesta 78b, 2000 Maribor, Slovenia
| |
Collapse
|
18
|
Hancock PC, Koduru SV, Sun M, Ravnic DJ. Induction of scaffold angiogenesis by recipient vasculature precision micropuncture. Microvasc Res 2021; 134:104121. [PMID: 33309646 DOI: 10.1016/j.mvr.2020.104121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
The success of engineered tissues continues to be limited by time to vascularization and perfusion. Here, we studied the effects of precision injury to a recipient macrovasculature in promoting neovessel formation in an adjacently placed scaffold. Segmental 60 μm diameter micropunctures (MP) were created in the recipient rat femoral artery and vein followed by coverage with a simple collagen scaffold. Scaffolds were harvested at 24, 48, 72, and 96 h post-implantation for detailed analysis. Those placed on top of an MP segment showed an earlier and more robust cellular infiltration, including both endothelial cells (CD31) and macrophages (F4/80), compared to internal non-micropunctured control limbs (p < 0.05). At the 96-hour timepoint, MP scaffolds demonstrated an increase in physiologic perfusion (p < 0.003) and a 2.5-fold increase in capillary network formation (p < 0.001). These were attributed to an overall upsurge in small vessel quantity. Furthermore, MP positioned scaffolds demonstrated significant increases in many modulators of angiogenesis, including VEGFR2 and Tie-2 despite a decrease in HIF-1α at all timepoints. This study highlights a novel microsurgical approach that can be used to rapidly vascularize or inosculate contiguously placed scaffolds and grafts. Thereby, offering an easily translatable route towards the creation of thicker and more clinically relevant engineered tissues.
Collapse
Affiliation(s)
- Patrick C Hancock
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Srinivas V Koduru
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA; Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Mingjie Sun
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA; Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dino J Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA; Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
19
|
Pointon A, Maher J, Davis M, Baker T, Cichocki J, Ramsden D, Hale C, Kolaja KL, Levesque P, Sura R, Stresser DM, Gintant G. Cardiovascular microphysiological systems (CVMPS) for safety studies - a pharma perspective. LAB ON A CHIP 2021; 21:458-472. [PMID: 33471007 DOI: 10.1039/d0lc01040e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integrative responses of the cardiovascular (CV) system are essential for maintaining blood flow to provide oxygenation, nutrients, and waste removal for the entire body. Progress has been made in independently developing simple in vitro models of two primary components of the CV system, namely the heart (using induced pluripotent stem-cell derived cardiomyocytes) and the vasculature (using endothelial cells and smooth muscle cells). These two in vitro biomimics are often described as immature and simplistic, and typically lack the structural complexity of native tissues. Despite these limitations, they have proven useful for specific "fit for purpose" applications, including early safety screening. More complex in vitro models offer the tantalizing prospect of greater refinement in risk assessments. To this end, efforts to physically link cardiac and vascular components to mimic a true CV microphysiological system (CVMPS) are ongoing, with the goal of providing a more holistic and integrated CV response model. The challenges of building and implementing CVMPS in future pharmacological safety studies are many, and include a) the need for more complex (and hence mature) cell types and tissues, b) the need for more realistic vasculature (within and across co-modeled tissues), and c) the need to meaningfully couple these two components to allow for integrated CV responses. Initial success will likely come with simple, bioengineered tissue models coupled with fluidics intended to mirror a vascular component. While the development of more complex integrated CVMPS models that are capable of differentiating safe compounds and providing mechanistic evaluations of CV liabilities may be feasible, adoption by pharma will ultimately hinge on model efficiency, experimental reproducibility, and added value above current strategies.
Collapse
Affiliation(s)
- Amy Pointon
- Functional Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Maher
- Translational Safety Sciences, Theravance Biopharma, South San Francisco, CA 94080, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol-Myers Squibb Company, 3553 Lawrenceville Rd Princeton, NJ 08540, USA
| | - Thomas Baker
- Eli Lilly, Lilly Corporate Center, Indianapolis IN 46285, USA
| | | | - Diane Ramsden
- Takeda Pharmaceuticals, 35 Landsdowne St., Cambridge, MA 02139, UK
| | - Christopher Hale
- Amgen Research, 1120 Veterans Blvd., S. San Francisco, 94080, USA
| | - Kyle L Kolaja
- Investigative Toxicology and Cell Therapy, Bristol-Myers Squibb Company, 556 Morris Avenue, Summit NJ 07042, USA
| | - Paul Levesque
- Discovery Toxicology, Bristol-Myers Squibb Company, 3553 Lawrenceville Rd Princeton, NJ 08540, USA
| | | | - David M Stresser
- Drug Metabolism, Pharmacokinetics and Translational Modeling, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA
| | - Gary Gintant
- Integrative Pharmacology, Integrated Science and Technology, AbbVie, 1 Waukegan Rd, N Chicago, IL 60064, USA.
| |
Collapse
|
20
|
Abstract
Since their initial description in 2005, biomaterials that are patterned to contain microfluidic networks ("microfluidic biomaterials") have emerged as promising scaffolds for a variety of tissue engineering and related applications. This class of materials is characterized by the ability to be readily perfused. Transport and exchange of solutes within microfluidic biomaterials is governed by convection within channels and diffusion between channels and the biomaterial bulk. Numerous strategies have been developed for creating microfluidic biomaterials, including micromolding, photopatterning, and 3D printing. In turn, these materials have been used in many applications that benefit from the ability to perfuse a scaffold, including the engineering of blood and lymphatic microvessels, epithelial tubes, and cell-laden tissues. This article reviews the current state of the field and suggests new areas of exploration for this unique class of materials.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|