1
|
Igamberdiev AU. Reflexive neural circuits and the origin of language and music codes. Biosystems 2024; 246:105346. [PMID: 39349135 DOI: 10.1016/j.biosystems.2024.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Conscious activity is grounded in the reflexive self-awareness in sense perception, through which the codes signifying sensual perceptive events operate and constrain human behavior. These codes grow via the creative generation of hypertextual statements. We apply the model of Vladimir Lefebvre (Lefebvre, V.A., 1987, J. Soc. Biol. Struct. 10, 129-175) to reveal the underlying structures on which the perception and creative development of language and music codes are based. According to this model, the reflexive structure of conscious subject is grounded in three thermodynamic cycles united by the control of the basic functional cycle by the second one, and resulting in the internal action that it turn is perceived by the third cycle evaluating this action. In this arrangement, the generative language structures are formed and the frequencies of sounds that form musical phrases and patterns are selected. We discuss the participation of certain neural brain structures and the establishment of reflexive neural circuits in the ad hoc transformation of perceptive signals, and show the similarities between the processes of perception and of biological self-maintenance and morphogenesis. We trace the peculiarities of the temporal encoding of emotions in music and musical creativity, as well as the principles of sharing musical information between the performing and the perceiving individuals.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
2
|
Li B, Zhang X, Qiao N, Chen J, Bi W, Zhi W, Ma L, Miao C, Wang L, Zou Y, Hu X. A real-time working memory evaluation system for macaques in microwave fields. Bioelectromagnetics 2024. [PMID: 39099158 DOI: 10.1002/bem.22519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.
Collapse
Affiliation(s)
- Bowen Li
- Beijing Institute of Radiation Medicine, Beijing, China
- College of Education, Hebei University, Baoding, China
| | - Xueyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Nan Qiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiawei Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijie Bi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Mozumder R, Chung S, Li S, Constantinidis C. Contributions of narrow- and broad-spiking prefrontal and parietal neurons on working memory tasks. Front Syst Neurosci 2024; 18:1365622. [PMID: 38577690 PMCID: PMC10991738 DOI: 10.3389/fnsys.2024.1365622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Neurons that generate persistent activity in the primate dorsolateral prefrontal and posterior parietal cortex have been shown to be predictive of behavior in working memory tasks, though subtle differences between them have been observed in how information is represented. The role of different neuron types in each of these areas has not been investigated at depth. We thus compared the activity of neurons classified as narrow-spiking, putative interneurons, and broad-spiking, putative pyramidal neurons, recorded from the dorsolateral prefrontal and posterior parietal cortex of male monkeys, to analyze their role in the maintenance of working memory. Our results demonstrate that narrow-spiking neurons are active during a range of tasks and generate persistent activity during the delay period over which stimuli need to be maintained in memory. Furthermore, the activity of narrow-spiking neurons was predictive of the subject's recall no less than that of broad-spiking neurons, which are exclusively projection neurons in the cortex. Our results show that putative interneurons play an active role during the maintenance of working memory and shed light onto the fundamental neural circuits that determine subjects' memories and judgments.
Collapse
Affiliation(s)
- Rana Mozumder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sophia Chung
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
王 龙, 李 双, 李 天, 郑 卫, 李 洋, 徐 桂. [Effects of 50 Hz electromagnetic field on rat working memory and investigation of neural mechanisms]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1135-1141. [PMID: 38151936 PMCID: PMC10753306 DOI: 10.7507/1001-5515.202303032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/15/2023] [Indexed: 12/29/2023]
Abstract
With the widespread use of electrical equipment, cognitive functions such as working memory (WM) could be severely affected when people are exposed to 50 Hz electromagnetic fields (EMF) for long term. However, the effects of EMF exposure on WM and its neural mechanism remain unclear. In the present paper, 15 rats were randomly assigned to three groups, and exposed to an EMF environment at 50 Hz and 2 mT for a different duration: 0 days (control group), 24 days (experimental group I), and 48 days (experimental group II). Then, their WM function was assessed by the T-maze task. Besides, their local field potential (LFP) in the media prefrontal cortex (mPFC) was recorded by the in vivo multichannel electrophysiological recording system to study the power spectral density (PSD) of θ and γ oscillations and the phase-amplitude coupling (PAC) intensity of θ-γ oscillations during the T-maze task. The results showed that the PSD of θ and γ oscillations decreased in experimental groups I and II, and the PAC intensity between θ and high-frequency γ (hγ) decreased significantly compared to the control group. The number of days needed to meet the task criterion was more in experimental groups I and II than that of control group. The results indicate that long-term exposure to EMF could impair WM function. The possible reason may be the impaired communication between different rhythmic oscillations caused by a decrease in θ-hγ PAC intensity. This paper demonstrates the negative effects of EMF on WM and reveals the potential neural mechanisms from the changes of PAC intensity, which provides important support for further investigation of the biological effects of EMF and its mechanisms.
Collapse
Affiliation(s)
- 龙龙 王
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 双燕 李
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 天翔 李
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 卫然 郑
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 洋 李
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 桂芝 徐
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 河北省生物电磁与神经工程重点实验室(天津 300130)Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
5
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from neurons with and without persistent activity in the primate prefrontal cortex. J Neurophysiol 2023; 130:1392-1402. [PMID: 37910532 PMCID: PMC11068397 DOI: 10.1152/jn.00290.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have challenged this idea. Theories that depend on the dynamic representation of information posit that stimulus information may be maintained by the activity pattern of neurons whose firing rate is not significantly elevated above their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Averaged across all neurons and stimuli, the firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory; however, this grand average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of stimulus information. These results reveal that prefrontal neurons that generate persistent activity maintain information more reliably during working memory.NEW & NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. Although the two models have been debated on theoretical terms, direct comparison of empirical results has been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
Affiliation(s)
- Lilianna Thrower
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Wenhao Dang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Rye G Jaffe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Jasmine D Sun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Zhao L, Zhao Y, Su D, Lv Z, Xie F, Hu P, Porter KLA, Mazzei I, Chin JD, Wang Y, Fang Y. Cognitive Functions in Patients with Moderate-to-Severe Obstructive Sleep Apnea Syndrome with Emphasis on Executive Functions and Decision-Making. Brain Sci 2023; 13:1436. [PMID: 37891804 PMCID: PMC10605234 DOI: 10.3390/brainsci13101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients with obstructive sleep apnea syndrome (OSAS) have cognitive dysfunction in many aspects, however, these patients' decision-making function remains unclear. In this study, the Game of Dice Task (GDT) was used to investigate the function of decision making in patients with OSAS. METHODS 30 participants with moderate to severe OSAS and 27 participants with no or mild OSAS diagnosed by sleep breathing monitor were selected from June 2021 to March 2022. Risky decision making was tested through the GDT with known risk probability. General demographic information and background cognitive functions, such as the overall cognitive functioning and executive functioning, were tested to establish baseline data. RESULTS There were no significant differences in gender, age, and years of education between the two groups. During the GDT, the moderate to severe OSAS group opted for the safety option at a statistically significant lower rate when compared to the no or mild OSAS group (7.53 ± 4.43 vs. 10.26 ± 4.26, p = 0.022). The moderate to severe OSAS group utilized the higher risk option than the group with no or mild OSAS (10.47 ± 4.43 vs. 7.74 ± 4.26, p = 0.022). The utilization rate of negative feedback in the moderate and severe OSAS group was lower than that in the no or mild OSAS group (7.50, 52.50 vs. 28.57, 100.00, p = 0.001). At the end of the GDT, the moderate and severe OSAS group was more likely to have negative total assets than the patients with no or mild OSAS (-1846.67 ± 2587.20 vs. 300.00 ± 1509.97, p < 0.001). Multiple linear regression analysis shows that there is a negative correlation between the selection of risk options and negative feedback utilization in the GDT. CONCLUSION Patients with moderate and severe OSAS displayed impaired decision-making throughout the study. Impaired decision-making is related to executive processes and may be caused by diminished prefrontal cortex functioning. However, the functions of memory, attention, language, abstraction, and orientation are relatively retained.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Yanyan Zhao
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Dongmei Su
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Zhi Lv
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Fei Xie
- Neurology Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China;
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Heifei 230022, China;
| | - Kierstin L. A. Porter
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
| | - Isabella Mazzei
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
| | - Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
| | - Yongsheng Wang
- Department of Respiratory Medicine, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Heifei 230011, China; (L.Z.); (Y.Z.); (D.S.); (Z.L.)
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA; (K.L.A.P.); (I.M.); (J.D.C.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Mozumder R, Constantinidis C. Single-neuron and population measures of neuronal activity in working memory tasks. J Neurophysiol 2023; 130:694-705. [PMID: 37609703 PMCID: PMC10649843 DOI: 10.1152/jn.00245.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
Information represented in working memory is reflected in the firing rate of neurons in the prefrontal cortex and brain areas connected to it. In recent years, there has been an increased realization that population measures capture more accurately neural correlates of cognitive functions. We examined how single neuron firing in the prefrontal and posterior parietal cortex of two male monkeys compared with population measures in spatial working memory tasks. Persistent activity was observed in the dorsolateral prefrontal and posterior parietal cortex and firing rate predicted working memory behavior, particularly in the prefrontal cortex. These findings had equivalents in population measures, including trajectories in state space that became less separated in error trials. We additionally observed rotations of stimulus representations in the neuronal state space for different task conditions, which were not obvious in firing rate measures. These results suggest that population measures provide a richer view of how neuronal activity is associated with behavior, largely confirming that persistent activity is the core phenomenon that maintains visual-spatial information in working memory.NEW & NOTEWORTHY Recordings from large numbers of neurons led to a reevaluation of neural correlates of cognitive functions, which traditionally were defined based on responses of single neurons or averages of firing rates. Analysis of neuronal recordings from the dorsolateral prefrontal and posterior parietal cortex revealed that properties of neuronal firing captured in classical studies of persistent activity can account for population representations, though some population characteristics did not have clear correlates in single neuron activity.
Collapse
Affiliation(s)
- Rana Mozumder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Bava JM, Wang Z, Bick SK, Englot DJ, Constantinidis C. Improving Visual Working Memory with Cholinergic Deep Brain Stimulation. Brain Sci 2023; 13:917. [PMID: 37371395 PMCID: PMC10296349 DOI: 10.3390/brainsci13060917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine is a critical modulatory neurotransmitter for cognitive function. Cholinergic drugs improve cognitive performance and enhance neuronal activity in the sensory and association cortices. An alternative means of improving cognitive function is through the use of deep brain stimulation. Prior animal studies have demonstrated that stimulation of the nucleus basalis of Meynert through DBS improves cognitive performance on a visual working memory task to the same degree as cholinesterase inhibitors. Additionally, unlike current pharmacological treatments for neurocognitive disorders, DBS does not lose efficacy over time and adverse effects are rare. These findings suggest that DBS may be a promising alternative for treating cognitive impairments in neurodegenerative disorders such as Alzheimer's disease. Thus, further research and human trials should be considered to assess the potential of DBS as a therapeutic treatment for these disorders.
Collapse
Affiliation(s)
- Janki M. Bava
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
| | - Sarah K. Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Sigala N, Kaldy Z, Reynolds GD. Editorial: The cognitive neuroscience of visual working memory, Volume II. Front Syst Neurosci 2022; 16:1017754. [PMID: 36185823 PMCID: PMC9517372 DOI: 10.3389/fnsys.2022.1017754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Natasha Sigala
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- *Correspondence: Natasha Sigala
| | - Zsuzsa Kaldy
- Department of Psychology, University of Massachusetts, Boston, MA, United States
| | - Greg D. Reynolds
- Department of Psychology, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
10
|
Xie Y, Liu YH, Constantinidis C, Zhou X. Neural Mechanisms of Working Memory Accuracy Revealed by Recurrent Neural Networks. Front Syst Neurosci 2022; 16:760864. [PMID: 35237134 PMCID: PMC8883483 DOI: 10.3389/fnsys.2022.760864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the neural mechanisms of working memory has been a long-standing Neuroscience goal. Bump attractor models have been used to simulate persistent activity generated in the prefrontal cortex during working memory tasks and to study the relationship between activity and behavior. How realistic the assumptions of these models are has been a matter of debate. Here, we relied on an alternative strategy to gain insights into the computational principles behind the generation of persistent activity and on whether current models capture some universal computational principles. We trained Recurrent Neural Networks (RNNs) to perform spatial working memory tasks and examined what aspects of RNN activity accounted for working memory performance. Furthermore, we compared activity in fully trained networks and immature networks, achieving only imperfect performance. We thus examined the relationship between the trial-to-trial variability of responses simulated by the network and different aspects of unit activity as a way of identifying the critical parameters of memory maintenance. Properties that spontaneously emerged in the artificial network strongly resembled persistent activity of prefrontal neurons. Most importantly, these included drift of network activity during the course of a trial that was causal to the behavior of the network. As a consequence, delay period firing rate and behavior were positively correlated, in strong analogy to experimental results from the prefrontal cortex. These findings reveal that delay period activity is computationally efficient in maintaining working memory, as evidenced by unbiased optimization of parameters in artificial neural networks, oblivious to the properties of prefrontal neurons.
Collapse
Affiliation(s)
- Yuanqi Xie
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Yichen Henry Liu
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xin Zhou
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Data Science Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Rhythmicity of Prefrontal Local Field Potentials after Nucleus Basalis Stimulation. eNeuro 2022; 9:ENEURO.0380-21.2022. [PMID: 35058309 PMCID: PMC8856705 DOI: 10.1523/eneuro.0380-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/12/2023] Open
Abstract
The action of acetylcholine in the cortex is critical for cognitive functions and cholinergic drugs can improve functions such as attention and working memory. An alternative means of enhancing cholinergic neuromodulation in primates is the intermittent electrical stimulation of the cortical source of acetylcholine, the nucleus basalis (NB) of Meynert. NB stimulation generally increases firing rate of neurons in the prefrontal cortex, however its effects on single neurons are diverse and complex. We sought to understand how NB stimulation affects global measures of neural activity by recording and analyzing local field potentials (LFPs) in monkeys as they performed working memory tasks. NB stimulation primarily decreased power in the alpha frequency range during the delay interval of working memory tasks. The effect was consistent across variants of the task. No consistent modulation in the delay interval of the task was observed in the gamma frequency range, which has previously been implicated in the maintenance of working memory. Our results reveal global effects of cholinergic neuromodulation via deep brain stimulation, an emerging intervention for the improvement of cognitive function.
Collapse
|