1
|
Sitbon O, Skride A, Feldman J, Sahay S, Shlobin OA, McLaughlin V, Ghofrani HA, Langleben D, Parsley E, D'Souza G, Marmon T, Kamau-Kelley W, Jones R, Grewal R, Wring S, Palacios M, Naik H, Denning J, Lazarus HM, Humbert M. Safety and efficacy of rodatristat ethyl for the treatment of pulmonary arterial hypertension (ELEVATE-2): a dose-ranging, randomised, multicentre, phase 2b trial. THE LANCET. RESPIRATORY MEDICINE 2024; 12:865-876. [PMID: 39307144 DOI: 10.1016/s2213-2600(24)00226-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The role of serotonin in pulmonary arterial hypertension has been extensively studied in recent decades, with preclinical data strongly indicating involvement in disease pathogenesis; however, clinical studies have yielded mixed results. METHODS ELEVATE-2 was a phase 2b dose-ranging, randomised, double-blind, placebo-controlled, multicentre trial investigating rodatristat ethyl as a treatment for patients with pulmonary arterial hypertension. The study was conducted at 64 sites across 16 countries in Europe and North America. Eligible participants were aged 18 years or older, had pulmonary arterial hypertension with WHO functional class II or III symptom severity, and had received a stable dose and regimen of one or more pulmonary arterial hypertension treatments for at least 12 weeks. Participants were randomly assigned 1:1:1 to receive two placebo tablets, one placebo and one rodatristat ethyl 300 mg tablet, or two rodatristat ethyl 300 mg tablets twice daily using an interactive response system. Participants, investigators, site personnel, and sponsors were masked to treatment allocation. Participants who completed the 24 week treatment period were invited to continue in an open-label extension. The primary endpoint was percent change in pulmonary vascular resistance (PVR) from baseline to week 24. Primary efficacy analyses were conducted on the intention-to-treat population and analyses of harms were conducted in the safety population, which included all patients who received any amount of the study drug. This trial is registered with ClinicalTrials.gov, NCT04712669, and is now complete. FINDINGS Between March 18, 2021 and Dec 13, 2022, 108 participants were enrolled and randomly assigned. 36 participants received placebo, 36 received rodatristat ethyl 300 mg, and 36 received rodatristat ethyl 600 mg twice daily. Overall, 85 (79%) of participants were female and 23 (21%) were male. The mean age was 52·8 years (SD 14·7) in the full analysis set. In the open-label extension phase, 62 (82%) of participants were female and 14 (18%) were male, and the mean age was 52·8 years (SD 14·7); this phase was terminated following sponsor review of unmasked main study results. Least-squares mean percent change in PVR from baseline to week 24 favoured placebo and was 5·8% (SE 18·1) for the placebo group, 63·1% (18·5) for the rodatristat ethyl 300 mg group, and 64·2% (18·0) for the rodatristat ethyl 600 mg group. Treatment-emergent adverse events (TEAE) were reported for 29 (81%) patients in the placebo group, 33 (92%) patients in the rodatristat ethyl 300 mg group, and all 36 (100%) patients in the rodatristat ethyl 600 mg group. TEAE leading to study discontinuation were reported for three (8%) patients in the placebo group, four (11%) patients in the rodatristat ethyl 300 mg group, and four (11%) in the rodatristat ethyl 600 mg group. There was one (3%) TEAE leading to death in the rodatristat ethyl 300 mg group. INTERPRETATION Our results indicate that reducing peripheral serotonin concentrations via rodatristat ethyl has a negative effect on pulmonary haemodynamics and cardiac function in patients with pulmonary arterial hypertension. This finding suggests that manipulating this pathway might not be a suitable option for pulmonary arterial hypertension therapy. FUNDING Enzyvant Therapeutics (now Sumitomo Pharma America).
Collapse
Affiliation(s)
- Olivier Sitbon
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 (HPPIT), Le Kremlin-Bicêtre, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Andris Skride
- Rare Diseases Unit VSIA Pauls Stradins Clinical University Hospital, Riga Stradiņš University, Riga, Latvia
| | | | - Sandeep Sahay
- Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, USA
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Vallerie McLaughlin
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | | - David Langleben
- Center for Pulmonary Vascular Disease, Division of Cardiology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ed Parsley
- Bellerophon Therapeutics, Warren, NJ, USA
| | | | | | | | - Renee Jones
- Sumitomo Pharma America (formerly Enzyvant), Morrisville, NC, USA
| | - Ravi Grewal
- Sumitomo Pharma America (formerly Enzyvant), Morrisville, NC, USA
| | - Steve Wring
- Sumitomo Pharma America (formerly Enzyvant), Morrisville, NC, USA
| | | | | | - Jill Denning
- Sumitomo Pharma America (formerly Enzyvant), Morrisville, NC, USA
| | - Howard M Lazarus
- Sumitomo Pharma America (formerly Enzyvant), Morrisville, NC, USA
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 (HPPIT), Le Kremlin-Bicêtre, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Legchenko E, Chouvarine P, Qadri F, Specker E, Nazaré M, Wesolowski R, Matthes S, Bader M, Hansmann G. Novel Tryptophan Hydroxylase Inhibitor TPT-001 Reverses PAH, Vascular Remodeling, and Proliferative-Proinflammatory Gene Expression. JACC Basic Transl Sci 2024; 9:890-902. [PMID: 39170954 PMCID: PMC11334415 DOI: 10.1016/j.jacbts.2024.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 08/23/2024]
Abstract
The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)-a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; P < 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; P < 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3+ T cells and proinflammatory F4/80+ and CD68+ macrophages and proliferating cell nuclear antigen-positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.
Collapse
Affiliation(s)
- Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | | | - Edgar Specker
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin-Buch, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
| | - Marc Nazaré
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin-Buch, Germany
| | - Radoslaw Wesolowski
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
| | - Susann Matthes
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Trypto Therapeutics GmbH, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- Department of Pediatric Cardiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Wesolowski R, Pleimes D, Specker E, Bader M. TPT-004, a Next-Generation Inhibitor of Tryptophan Hydroxylase, Ameliorates Pulmonary Arterial Hypertension in Rats. J Am Heart Assoc 2024; 13:e034240. [PMID: 38726898 PMCID: PMC11179815 DOI: 10.1161/jaha.124.034240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Radoslaw Wesolowski
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin Germany
- Trypto Therapeutics GmbH Berlin Germany
| | | | - Edgar Specker
- Trypto Therapeutics GmbH Berlin Germany
- Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin Germany
- Trypto Therapeutics GmbH Berlin Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin Berlin Germany
- Charité-Universitätsmedizin Berlin Berlin Germany
- University of Lübeck, Institute for Biology Lübeck Germany
| |
Collapse
|
4
|
Li Y, Gao G, Han Y, Xiao B, Shen L, Yang X, Liu Y, Mu Y, Zhang N, Niu C, Wang Y. Rho kinase inhibitor Y-27632 downregulates IL-1β expression in mice with experimental autoimmune myocarditis. Sci Rep 2024; 14:9763. [PMID: 38684719 PMCID: PMC11058197 DOI: 10.1038/s41598-024-60239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Autoimmune myocarditis is the limited or diffuse inflammation of the myocardium due to dysfunctional cellular and humoral immunity mechanisms. We constructed mouse models of experimental autoimmune myocarditis (EAM) using peptide MyHC-α614-629. On the day after secondary immunization, the mice were intraperitoneally injected with Rho kinase (ROCK) inhibitor Y-27632. On day 21, the cardiac tissues were harvested and weighed. The hearts of EAM mice were significantly enlarged and whitened. Furthermore, body weight (BW) slowly increased during the treatment period, the heart weight (HW) and the ratio of HW/eventual BW were increased, and inflammatory infiltration and fibrosis were aggravated in the myocardial tissue. Y-27632 treatment improved the aforementioned phenotypic and pathological features of EAM mice. Mechanistic analysis revealed a significant increase in Notch1, Hes1, Jag2, Dil1, Toll-like receptor (Tlr) 2, and interleukin (IL)-1β expression in the myocardial tissue of EAM mice. Notably, IL-1β expression was correlated with that of Notch1 and Tlr2. Following Y-27632 treatment, the expression of key target genes of the Notch signaling pathway (Notch1, Hes1, Dil1, and Jag2) and Tlr2 were obviously decreased. Y-27632 treatment also decreased the number of monocytes in the spleen of EAM mice. Thus, ROCK inhibitor Y-27632 exerted a protective effect in EAM mice by downregulating IL-1β expression. This study aimed to provide a reference point for the future treatment of myocarditis in clinical settings.
Collapse
Affiliation(s)
- Yanjun Li
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Ge Gao
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Yiru Han
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Bingshuai Xiao
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Liyuan Shen
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Xiangxin Yang
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Yangqing Liu
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Yaqin Mu
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Nianping Zhang
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China
| | - Chunhong Niu
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi, China.
| | - Yuxing Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Huang YZ, Wu JC, Lu GF, Li HB, Lai SM, Lin YC, Gui LX, Sham JSK, Lin MJ, Lin DC. Pulmonary Hypertension Induces Serotonin Hyperreactivity and Metabolic Reprogramming in Coronary Arteries via NOX1/4-TRPM2 Signaling Pathway. Hypertension 2024; 81:582-594. [PMID: 38174565 DOI: 10.1161/hypertensionaha.123.21345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Clinical evidence revealed abnormal prevalence of coronary artery (CA) disease in patients with pulmonary hypertension (PH). The mechanistic connection between PH and CA disease is unclear. Serotonin (5-hydroxytryptamine), reactive oxygen species, and Ca2+ signaling have been implicated in both PH and CA disease. Our recent study indicates that NOXs (NADPH [nicotinamide adenine dinucleotide phosphate] oxidases) and TRPM2 (transient receptor potential cation channel subfamily M member 2) are key components of their interplay. We hypothesize that activation of the NOX-TRPM2 pathway facilitates the remodeling of CA in PH. METHODS Left and right CAs from chronic hypoxia and monocrotaline-induced PH rats were collected to study vascular reactivity, gene expression, metabolism, and mitochondrial function. Inhibitors or specific siRNA were used to examine the pathological functions of NOX1/4-TRPM2 in CA smooth muscle cells. RESULTS Significant CA remodeling and 5-hydroxytryptamine hyperreactivity in the right CA were observed in PH rats. NOX1/4-mediated reactive oxygen species production coupled with TRPM2-mediated Ca2+ influx contributed to 5-hydroxytryptamine hyperresponsiveness. CA smooth muscle cells from chronic hypoxia-PH rats exhibited increased proliferation, migration, apoptosis, and metabolic reprogramming in an NOX1/4-TRPM2-dependent manner. Furthermore, the NOX1/4-TRPM2 pathway participated in mitochondrial dysfunction, involving mitochondrial DNA damage, reactive oxygen species production, elevated mitochondrial membrane potential, mitochondrial Ca2+ accumulation, and mitochondrial fission. In vivo knockdown of NOX1/4 alleviated PH and suppressed CA remodeling in chronic hypoxia rats. CONCLUSIONS PH triggers an increase in 5-hydroxytryptamine reactivity in the right CA and provokes metabolic reprogramming and mitochondrial disruption in CA smooth muscle cells via NOX1/4-TRPM2 activation. This signaling pathway may play an important role in CA remodeling and CA disease in PH.
Collapse
Affiliation(s)
- Yan-Zhen Huang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Ji-Chun Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, China (J.-C.W.)
| | - Gui-Feng Lu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Hui-Bin Li
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Su-Mei Lai
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Yi-Chen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Long-Xin Gui
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.S.K.S.)
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
- Department of Epidemiology and Health Statistics, School of Public Health (D.-C.L.), Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
7
|
Rybakova EY, Avdonin PP, Trufanov SK, Goncharov NV, Avdonin PV. Synergistic Interaction of 5-HT 1B and 5-HT 2B Receptors in Cytoplasmic Ca 2+ Regulation in Human Umbilical Vein Endothelial Cells: Possible Involvement in Pathologies. Int J Mol Sci 2023; 24:13833. [PMID: 37762136 PMCID: PMC10530667 DOI: 10.3390/ijms241813833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to explore the involvement of 5-HT1B and 5-HT2B receptors (5-HT1BR and 5-HT2BR) in the regulation of free cytoplasmic calcium concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC). We have shown by quantitative PCR analysis, that 5-HT1BR and 5-HT2BR mRNAs levels are almost equal in HUVEC. Immunofluorescent staining demonstrated, that 5-HT1BR and 5-HT2BR are expressed both in plasma membrane and inside the cells. Intracellular 5-HT1BR are localized mainly in the nuclear region, whereas 5-HT2BR receptors are almost evenly distributed in HUVEC. 5-HT, 5-HT1BR agonist CGS12066B, or 5-HT2BR agonist BW723C86 added to HUVEC caused a slight increase in [Ca2+]i, which was much lower than that of histamine, ATP, or SFLLRN, an agonist of protease-activated receptors (PAR1). However, activation of 5-HT1BR with CGS12066B followed by activation of 5-HT2BR with BW723C86 manifested a synergism of response, since several-fold higher rise in [Ca2+]i occurred. CGS12066B caused more than a 5-fold increase in [Ca2+]i rise in HUVEC in response to 5-HT. This 5-HT induced [Ca2+]i rise was abolished by 5-HT2BR antagonist RS127445, indicating that extracellular 5-HT acts through 5-HT2BR. Synergistic [Ca2+]i rise in response to activation of 5-HT1BR and 5-HT2BR persisted in a calcium-free medium. It was suppressed by the phospholipase C inhibitor U73122 and was not inhibited by the ryanodine and NAADP receptors antagonists dantrolene and NED-19. [Ca2+]i measurements in single cells demonstrated that activation of 5-HT2BR alone by BW723C86 caused single asynchronous [Ca2+]i oscillations in 19.8 ± 4.2% (n = 3) of HUVEC that occur with a long delay (66.1 ± 4.3 s, n = 71). On the contrary, histamine causes a simultaneous and almost immediate increase in [Ca2+]i in all the cells. Pre-activation of 5-HT1BR by CGS12066B led to a 3-4 fold increase in the number of HUVEC responding to BW723C86, to synchronization of their responses with a delay shortening, and to the bursts of [Ca2+]i oscillations in addition to single oscillations. In conclusion, to get a full rise of [Ca2+]i in HUVEC in response to 5-HT, simultaneous activation of 5-HT1BR and 5-HT2BR is required. 5-HT causes an increase in [Ca2+]i via 5-HT2BR while 5-HT1BR could be activated by the membrane-permeable agonist CGS12066B. We hypothesized that CGS12066B acts via intracellular 5-HT1BR inaccessible to extracellular 5-HT. Intracellular 5-HT1BR might be activated by 5-HT which could be accumulated in EC under certain pathological conditions.
Collapse
Affiliation(s)
- Elena Yu. Rybakova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Sergei K. Trufanov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia;
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| |
Collapse
|
8
|
Xiong Y, Lin Z, Bu P, Yu T, Endo Y, Zhou W, Sun Y, Cao F, Dai G, Hu Y, Lu L, Chen L, Cheng P, Zha K, Shahbazi MA, Feng Q, Mi B, Liu G. A Whole-Course-Repair System Based on Neurogenesis-Angiogenesis Crosstalk and Macrophage Reprogramming Promotes Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212300. [PMID: 36811203 DOI: 10.1002/adma.202212300] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Indexed: 05/12/2023]
Abstract
Diabetic wound (DW) therapy is currently a big challenge in medicine and strategies to enhance neurogenesis and angiogenesis have appeared to be a promising direction. However, the current treatments have failed to coordinate neurogenesis and angiogenesis simultaneously, leading to an increased disability rate caused by DWs. Herein, a whole-course-repair system is introduced by a hydrogel to concurrently achieve a mutually supportive cycle of neurogenesis-angiogenesis under a favorable immune-microenvironment. This hydrogel can first be one-step packaged in a syringe for later in situ local injections to cover wounds long-termly for accelerated wound healing via the synergistic effect of magnesium ions (Mg2+ ) and engineered small extracellular vesicles (sEVs). The self-healing and bio-adhesive properties of the hydrogel make it an ideal physical barrier for DWs. At the inflammation stage, the formulation can recruit bone marrow-derived mesenchymal stem cells to the wound sites and stimulate them toward neurogenic differentiation, while providing a favorable immune microenvironment via macrophage reprogramming. At the proliferation stage of wound repair, robust angiogenesis occurs by the synergistic effect of the newly differentiated neural cells and the released Mg2+ , allowing a regenerative neurogenesis-angiogenesis cycle to take place at the wound site. This whole-course-repair system provides a novel platform for combined DW therapy.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Pengzhen Bu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Tao Yu
- Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Yori Endo
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yun Sun
- Department of neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, P. R. China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| |
Collapse
|
9
|
Xiao M, Lai D, Yu Y, Wu Q, Zhang C. Pathogenesis of pulmonary hypertension caused by left heart disease. Front Cardiovasc Med 2023; 10:1079142. [PMID: 36937903 PMCID: PMC10020203 DOI: 10.3389/fcvm.2023.1079142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension has high disability and mortality rates. Among them, pulmonary hypertension caused by left heart disease (PH-LHD) is the most common type. According to the 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension, PH-LHD is classified as group 2 pulmonary hypertension. PH-LHD belongs to postcapillary pulmonary hypertension, which is distinguished from other types of pulmonary hypertension because of its elevated pulmonary artery wedge pressure. PH-LHD includes PH due to systolic or diastolic left ventricular dysfunction, mitral or aortic valve disease and congenital left heart disease. The primary strategy in managing PH-LHD is optimizing treatment of the underlying cardiac disease. Recent clinical studies have found that mechanical unloading of left ventricle by an implantable non-pulsatile left ventricular assist device with continuous flow properties can reverse pulmonary hypertension in patients with heart failure. However, the specific therapies for PH in LHD have not yet been identified. Treatments that specifically target PH in LHD could slow its progression and potentially improve disease severity, leading to far better clinical outcomes. Therefore, exploring the current research on the pathogenesis of PH-LHD is important. This paper summarizes and classifies the research articles on the pathogenesis of PH-LHD to provide references for the mechanism research and clinical treatment of PH-LHD, particularly molecular targeted therapy.
Collapse
Affiliation(s)
- Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Disheng Lai
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yumin Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingqing Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|