1
|
Wang X, Zhou X, Zhang X. Effects of Ellagic Acid on Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. J Nutr Metab 2024; 2024:5558665. [PMID: 38915316 PMCID: PMC11196188 DOI: 10.1155/2024/5558665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Background Abnormal glucose and lipid metabolism (GALM) serve as both a cause and an inducer for the development of the disease. Improvement and treatment of GALM are an important stage to prevent the occurrence and development of the disease. However, current clinical treatment for GALM is limited. Ellagic acid (EA), a common polyphenol present in foods, has been shown to improve abnormalities in GALM observed in patients suffering from metabolic diseases. Objective This study used a meta-analysis method to systematically assess the effects of EA on GALM. Method As of November 8, 2023, a comprehensive search was conducted across 5 databases, namely, PubMed, Embase, Web of Science, Cochrane Library, and Google Scholar to identify randomized controlled trials (RCTs) in which EA served as the primary intervention for diseases related to GALM. The risk of bias within the included studies was assessed according to the Cochrane Handbook. All statistical analyzes were performed using RevMan 5.4 software. Results In this study, a total of 482 articles were retrieved, resulting in the inclusion of 10 RCTs in the meta-analysis. The results showed that EA could reduce fasting blood glucose (FBG) (p = 0.008), increase insulin secretion (p = 0.01), improve insulin resistance index (HOMA-IR) (p = 0.003), decrease triglyceride (TG) (p = 0.004), and reduce cholesterol (Chol) (p = 0.04) and low-density lipoprotein (LDL-c) (p = 0.0004). EA had no significant effect on waist circumference (WC), body weight (BW), body mass index (BMI), 2 hours after prandial blood glucose (2 h-PG), total cholesterol (TC), and high-density lipoprotein (HDL-c). Conclusions The effect of improvement in glucose and lipids of EA was closely related to the dose and the intervention time. EA can improve GALM caused by diseases. To corroborate the findings of this study and improve the reliability of the results, EA is imperative to refine the research methodology and increase the sample size in future investigations.
Collapse
Affiliation(s)
- Xuelian Wang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaotao Zhou
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxia Zhang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zeng G, Jin YZ, Huang Y, Hu JS, Li MF, Tian M, Lu J, Huang R. Transcriptomic Analysis of Type 2 Diabetes Mellitus Combined with Lower Extremity Atherosclerotic Occlusive Disease. Diabetes Metab Syndr Obes 2024; 17:997-1011. [PMID: 38435631 PMCID: PMC10909374 DOI: 10.2147/dmso.s432698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Background The pathological damage mechanism of type 2 diabetes (T2D) and macroangiopathy is extremely complex, and T2D and arteriosclerosis obliterans have different biological behaviors and clinical features. To explore the mechanism of lower extremity arteriosclerosis occlusion (LEAOD) in T2D patients, we utilized RNA-seq to identify unique gene expression signatures of T2D and LEAOD through transcriptomic analysis. Methods We obtained blood samples and performed RNA sequencing from four patients with T2D, five of whom had LEAOD. Another six age- and gender-matched blood samples from healthy volunteers were used for control. By exploring the general and specific differential expression analysis after transcriptome sequencing, specific gene expression patterns of T2D and LEAOD were verified. Results Transcriptome analysis found differentially expressed genes in T2D, and T2D + LEAOD (vs normal) separately, of which 35/486 (T2D/T2D + LEAOD) were up-regulated and 1290/2970 (T2D/T2D + LEAOD) were down-regulated. A strong overlap of 571 genes across T2D, LEAOD, and coexisting conditions was mainly involved in extracellular exosomes and the transcription process. By exploring the sex difference gene expression features between T2D, T2D + LEAOD, and healthy controls, we noticed that sex chromosome-associated genes do not participate in the sexual dimorphism gene expression profiles of T2D and LEAOD. Protein-Protein Interaction Network analysis and drug target prediction provided the drug candidates to treat T2D and LEAOD. Conclusion This study provides some evidence at the transcript level to uncover the association of T2D with LEAOD. The screened hub genes and predicted target drugs may be therapeutic targets.
Collapse
Affiliation(s)
- Guang Zeng
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yong-Zhi Jin
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yi Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Jun-Sheng Hu
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Meng-Fan Li
- Department of General Surgery, LiQun Hospital, Shanghai, 200333, People’s Republic of China
| | - Ming Tian
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| |
Collapse
|
3
|
Silva FM, Duarte-Mendes P, Teixeira AM, Soares CM, Ferreira JP. The effects of combined exercise training on glucose metabolism and inflammatory markers in sedentary adults: a systematic review and meta-analysis. Sci Rep 2024; 14:1936. [PMID: 38253590 PMCID: PMC10803738 DOI: 10.1038/s41598-024-51832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
This systematic review and meta-analysis aimed to determine the magnitude of the effect of combined exercise training on glucose metabolism markers, adipokines, and inflammatory cytokines in non-diabetic sedentary adults. PubMed, Web of Science, Scopus, Cochrane Library electronic databases and reference lists of included studies were explored for randomized controlled trials (RCTs) that included physically inactive adults and provided combined training interventions (aerobic plus resistance exercise). Effects on fasting glucose and insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), HbA1c, adiponectin, leptin, IL-6, TNF-α, and C-reactive protein (CRP) in exercise vs control groups were analyzed using random effects meta-analysis. The Cochrane Risk of Bias Tool for Randomized Trials 2.0 (RoB 2) was used to assess the risk of bias. A total of 24 RCTs were included in the quantitative analysis. Combined exercise training significantly decrease fasting glucose (standardized mean difference, SMD: - 0.474, 95% CI [- 0.829, - 0.120], p = 0.009, 35 study arms), fasting insulin (SMD: - 1.024, 95% CI [- 1.502, - 0.545], p < 0.001, 27 study arms), HOMA-IR (SMD: - 0.946, 95% CI [- 1.450, - 0.442], p < 0.001, 23 study arms), TNF-α (SMD: - 0.972, 95% CI [- 1.361, - 0.582], p < 0.001, 10 study arms), and CRP (SMD: - 0.507, 95% CI [- 0.818, - 0.196], p = 0.001, 14 study arms). No significant effects were observed for HbA1c, adiponectin, leptin, and IL-6 levels. Random effects meta-regression models by age, sex, and intervention length were not able to explain any of the variation in the effect size of HOMA-IR. Findings from this systematic review and meta-analysis suggest that combined exercise training improves some glucose metabolism markers and inflammatory parameters in sedentary adults without diabetes.
Collapse
Affiliation(s)
- Fernanda M Silva
- University of Coimbra, Faculty of Sport Sciences and Physical Education, FCDEF, Coimbra, Portugal.
- Research Unit for Sport and Physical Activity (CIDAF, Uid/Dtp/04213/2020), University of Coimbra, Coimbra, Portugal.
| | - Pedro Duarte-Mendes
- Department of Sports and Well-Being, Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
- Sport, Health and Exercise Research Unit (SHERU), Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
- Sport Physical activity and health Research & INnovation CenTer, SPRINT, Santarém, Portugal
| | - Ana M Teixeira
- University of Coimbra, Faculty of Sport Sciences and Physical Education, FCDEF, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, Uid/Dtp/04213/2020), University of Coimbra, Coimbra, Portugal
| | - Carlos M Soares
- University of Coimbra, Faculty of Sport Sciences and Physical Education, FCDEF, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, Uid/Dtp/04213/2020), University of Coimbra, Coimbra, Portugal
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - José P Ferreira
- University of Coimbra, Faculty of Sport Sciences and Physical Education, FCDEF, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, Uid/Dtp/04213/2020), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Szkudelski T, Szkudelska K. The Anti-Diabetic Potential of Baicalin: Evidence from Rodent Studies. Int J Mol Sci 2023; 25:431. [PMID: 38203600 PMCID: PMC10779254 DOI: 10.3390/ijms25010431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Baicalin is a biologically active flavonoid compound that benefits the organism in various pathological conditions. Rodent studies have shown that this compound effectively alleviates diabetes-related disturbances in models of type 1 and type 2 diabetes. Baicalin supplementation limited hyperglycemia and improved insulin sensitivity. The anti-diabetic effects of baicalin covered the main insulin-sensitive tissues, i.e., the skeletal muscle, the adipose tissue, and the liver. In the muscle tissue, baicalin limited lipid accumulation and improved glucose transport. Baicalin therapy was associated with diminished adipose tissue content and increased mitochondrial biogenesis. Hepatic lipid accumulation and glucose output were also decreased as a result of baicalin supplementation. The molecular mechanism of the anti-diabetic action of this compound is pleiotropic and is associated with changes in the expression/action of pivotal enzymes and signaling molecules. Baicalin positively affected, among others, the tissue insulin receptor, glucose transporter, AMP-activated protein kinase, protein kinase B, carnitine palmitoyltransferase, acetyl-CoA carboxylase, and fatty acid synthase. Moreover, this compound ameliorated diabetes-related oxidative and inflammatory stress and reduced epigenetic modifications. Importantly, baicalin supplementation at the effective doses did not induce any side effects. Results of rodent studies imply that baicalin may be tested as an anti-diabetic agent in humans.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | | |
Collapse
|
5
|
Ahmad AM, Mahmoud AM, Serry ZH, Mohamed MM, Abd Elghaffar HA. Effects of low-versus high-volume high-intensity interval training on glycemic control and quality of life in obese women with type 2 diabetes. A randomized controlled trial. J Exerc Sci Fit 2023; 21:395-404. [PMID: 37954548 PMCID: PMC10632101 DOI: 10.1016/j.jesf.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Background/objective Comparison between different training volumes of high-intensity interval training (HIIT) is understudied in type 2 diabetes. This study aimed to compare the effects of low- and high-volume HIIT on glycemic control, blood lipids, blood pressure, anthropometric adiposity measures, cardiorespiratory fitness, and health-related quality of life (HRQoL) in women with type 2 diabetes. Methods Seventy-two obese women with type 2 diabetes aged 36-55 were randomly assigned to a low-volume HIIT group (i.e., 2 × 4-min high-intensity treadmill exercise at 85%-90% of peak heart rate, with a 3-min active recovery interval in between), a high-volume HIIT group (i.e., 4 × 4-min high-intensity treadmill exercise at 85%-90% of peak heart rate, with three 3-min active recovery intervals in between), and a non-exercising control group. Patients in HIIT groups exercised three days a week for 12 weeks. All patients received oral hypoglycemic medications with no calorie restrictions. The outcome measures were glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), 2-hour postprandial blood glucose (2-hr PPBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), waist circumference (WC), waist-to-hip ratio, time to maximal exhaustion determined from a maximal treadmill exercise test (i.e., a measure of cardiorespiratory fitness), and HRQoL assessed by the 12-item Short Form (SF-12) Health Survey. Results The low- and high-volume HIIT groups showed significant improvements in all outcome measures compared to the baseline and the non-exercising group (P < 0.05), except for DBP in the low-volume HIIT group (p > 0.05). Also, both low- and high-volume HIIT groups showed similar improvements in TC, HDL, SBP, DBP, BMI, WC, waist-to-hip ratio, and the SF-12 scores, with no significant between-groups difference (p > 0.05). The high-volume HIIT group, however, showed more significant improvements in HbA1c, FBG, 2-hr PPBG, TG, LDL, and treadmill time to maximal exhaustion than the low-volume HIIT group (p < 0.05). The non-exercising group showed non-significant changes in all outcome measures (p > 0.05). Conclusion Low-volume HIIT could be equally effective as high-volume HIIT for improving TC, HDL, blood pressure, anthropometric adiposity measures, and HRQoL in obese women with type 2 diabetes. Nevertheless, high-volume HIIT could have a greater impact on glycemic control, TG, LDL, and cardiorespiratory fitness in these patients. Trial registration ClinicalTrials.gov, NCT05110404.
Collapse
Affiliation(s)
- Ahmad Mahdi Ahmad
- Department of Physical Therapy for Cardiovascular and Respiratory Disorders, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | | | - Zahra Hassan Serry
- Department of Physical Therapy for Cardiovascular and Respiratory Disorders, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Mohamed Mady Mohamed
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Heba Ali Abd Elghaffar
- Department of Physical Therapy for Cardiovascular and Respiratory Disorders, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Wang X, Sun R, Liu R, Liu R, Sui W, Geng J, Zhu Q, Wu T, Zhang M. Sodium alginate-sodium hyaluronate-hydrolyzed silk for microencapsulation and sustained release of kidney tea saponin: The regulation of human intestinal flora in vitro. Int J Biol Macromol 2023; 249:126117. [PMID: 37541481 DOI: 10.1016/j.ijbiomac.2023.126117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ronghao Sun
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jieting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
7
|
Zhang H, Mulya A, Nieuwoudt S, Vandanmagsar B, McDowell R, Heintz EC, Zunica ER, Collier JJ, Bozadjieva-Kramer N, Seeley RJ, Axelrod CL, Kirwan JP. GDF15 Mediates the Effect of Skeletal Muscle Contraction on Glucose-Stimulated Insulin Secretion. Diabetes 2023; 72:1070-1082. [PMID: 37224335 PMCID: PMC10382648 DOI: 10.2337/db22-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Exercise is a first-line treatment for type 2 diabetes and preserves β-cell function by hitherto unknown mechanisms. We postulated that proteins from contracting skeletal muscle may act as cellular signals to regulate pancreatic β-cell function. We used electric pulse stimulation (EPS) to induce contraction in C2C12 myotubes and found that treatment of β-cells with EPS-conditioned medium enhanced glucose-stimulated insulin secretion (GSIS). Transcriptomics and subsequent targeted validation revealed growth differentiation factor 15 (GDF15) as a central component of the skeletal muscle secretome. Exposure to recombinant GDF15 enhanced GSIS in cells, islets, and mice. GDF15 enhanced GSIS by upregulating the insulin secretion pathway in β-cells, which was abrogated in the presence of a GDF15 neutralizing antibody. The effect of GDF15 on GSIS was also observed in islets from GFRAL-deficient mice. Circulating GDF15 was incrementally elevated in patients with pre- and type 2 diabetes and positively associated with C-peptide in humans with overweight or obesity. Six weeks of high-intensity exercise training increased circulating GDF15 concentrations, which positively correlated with improvements in β-cell function in patients with type 2 diabetes. Taken together, GDF15 can function as a contraction-induced protein that enhances GSIS through activating the canonical signaling pathway in a GFRAL-independent manner. ARTICLE HIGHLIGHTS Exercise improves glucose-stimulated insulin secretion through direct interorgan communication. Contracting skeletal muscle releases growth differentiation factor 15 (GDF15), which is required to synergistically enhance glucose-stimulated insulin secretion. GDF15 enhances glucose-stimulated insulin secretion by activating the canonical insulin release pathway. Increased levels of circulating GDF15 after exercise training are related to improvements in β-cell function in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Anny Mulya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Stephan Nieuwoudt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Bolormaa Vandanmagsar
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Ruth McDowell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth C. Heintz
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Elizabeth R.M. Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - J. Jason Collier
- Islet Biology and Inflammation Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christopher L. Axelrod
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - John P. Kirwan
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|