1
|
Khalaj M, Kamali M, Aminabhavi TM, Costa MEV, Dewil R, Appels L, Capela I. Sustainability insights into the synthesis of engineered nanomaterials - Problem formulation and considerations. ENVIRONMENTAL RESEARCH 2023; 220:115249. [PMID: 36632884 DOI: 10.1016/j.envres.2023.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.
Collapse
Affiliation(s)
- Mohammadreza Khalaj
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mohammadreza Kamali
- Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, Punjab, 140 413, India.
| | - M Elisabete V Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Khan M, Das S, Roy A, Roy S. Reusable Sugar-Based Gelator for Marine Oil-Spill Recovery and Waste Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:899-908. [PMID: 36606755 DOI: 10.1021/acs.langmuir.2c03204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, the gelation ability of a series of novel pyridine-based glucose tailored gelators (DPHAEN, DPHABN, and DPHAHN) with a flexible alkyl chain has been examined in binary solvent mixtures using a number of techniques, for example, UV spectroscopy, FT-IR spectroscopy, NMR spectroscopy, rheology measurement, SEM, XRD, and computational study. Proposed herein is an environment-friendly method to realize toxic dye separation and oil/water separation. It has been found that gels in a selective binary solvent mixture are efficient reusable absorbers of toxic dye molecules. A new gravitational force-driven, simple one-step, toxic dye removal and oil-water separation method is presented for sustainable filtration of waste water and simultaneous collection of oil. The gel column also showed high stability and reusability over repeated use and can be easily scaled for efficient clean-up of a large number of toxic dyes and oil spills present in water. Studies also exposed that the gel column can simultaneously separate dye molecules and mineral oils from water. This simple, green, and efficient method overcomes a nontrivial hurdle for environmentally safe separation of toxic dyes as well as oil/water mixtures and offers insights into the design of advanced materials for practical oil/water separation.
Collapse
Affiliation(s)
- Meheboob Khan
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| | - Siddhartha Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| | - Aparna Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| | - Sumita Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| |
Collapse
|
3
|
G G, Sathish A, Kumar PS, Nithya K, Rangasamy G. A review on current progress of graphene-based ternary nanocomposites in the removal of anionic and cationic inorganic pollutants. CHEMOSPHERE 2022; 309:136617. [PMID: 36181843 DOI: 10.1016/j.chemosphere.2022.136617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The current review aims to summarize the ongoing advances in high-performing graphene-based ternary nanocomposites for removing cationic and anionic inorganic pollutants. Graphene derivatives are extensively utilized for the development of composites due to their high synergism with co-functional materials, rational design, flexible surface chemistry, high mobile charge carriers, improved binding properties, and many more. The past ten years have witnessed progressive research on graphene-based ternary nanocomposites in a multitude of pollution remediation applications. Therefore, the focus falls on understanding how these ternary nanocomposites are tailored to capture the inorganic cationic and anionic contaminants with particular emphasis on graphene derivatives as base matrix and filler. The review investigates the synthesis, categorization, and characterization techniques of graphene-based ternary composites. Besides, the study broadens the understanding of the binding mechanism of the pollutants onto graphene ternary composites. The review also assesses the separation and recycling efficacy of the composites in detail. The future prospects in improving the practical application of the ternary systems also have been discussed. The comprehensive review on graphene based ternary systems detailing their structural and functional aspects, as well as their performance as inorganic decontaminants can provide deep insights for researchers in improvising wastewater treatment technologies.
Collapse
Affiliation(s)
- Gopika G
- Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Asha Sathish
- Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - K Nithya
- Department of Chemical Engineering & Materials Science, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India; Centre of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| |
Collapse
|
4
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
5
|
Bilal M, Rasheed T, Mehmood S, Tang H, Ferreira LFR, Bharagava RN, Iqbal HMN. Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials - A review. CHEMOSPHERE 2020; 253:126770. [PMID: 32464768 DOI: 10.1016/j.chemosphere.2020.126770] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023]
Abstract
An unprecedented rise in population growth and rapid worldwide industrial development are associated with the increasing discharge of a range of toxic and baleful compounds. These toxic pollutants including dyes, endocrine-disrupters, heavy metals, personal care products, and pharmaceuticals are destructing nature's balance and intensifying environmental toxicity at a disquieting rate. Therefore, finding better, novel and more environmentally sound approaches for wastewater remediation are of great importance. Nanoscale materials have opened up some new horizons in various fields of science and technology. Among a range of treatment technologies, nanostructured materials have recently received incredible interest as an emerging platform for wastewater remediation owing to their exceptional surface-area-to-volume ratio, unique electrical and chemical properties, quantum size effects, high scalability, and tunable surface functionalities. An array of nanomaterials including noble metal-based nanostructures, transition metal oxide nanomaterials, carbon-based nanomaterials, carbon nanotubes, and graphene/graphene oxide nanomaterials to their novel nanocomposites and nanoconjugates have been attempted as the promising catalysts to overcome environmental dilemmas. In this review, we summarized recent advances in nanostructured materials that are particularly engineered for the remediation of environmental contaminants. The toxicity of various classes of relevant tailored nanomaterials towards human health and the ecosystem along with perspectives is also presented. In our opinion, an overview of the up-to-date advancements on this emerging topic may provide new ideas and thoughts for engineering low-cost and highly-efficient nanostructured materials for the abatement of recalcitrant pollutants for a sustainable environment.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research, Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| |
Collapse
|
6
|
Hao L, Song H, Zhan Z, Lv Y. Multifunctional Reduced Graphene Oxide-Based Nanoplatform for Synergistic Targeted Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2020; 3:5213-5222. [PMID: 35021696 DOI: 10.1021/acsabm.0c00614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Liying Hao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
7
|
Graphene Composites for Lead Ions Removal from Aqueous Solutions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142925] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The indiscriminate disposal of non-biodegradable, heavy metal ionic pollutants from various sources, such as refineries, pulp industries, lead batteries, dyes, and other industrial effluents, into the aquatic environment is highly dangerous to the human health as well as to the environment. Among other heavy metals, lead (Pb(II)) ions are some of the most toxic pollutants generated from both anthropogenic and natural sources in very large amounts. Adsorption is the simplest, efficient and economic water decontamination technology. Hence, nanoadsorbents are a major focus of current research for the effective and selective removal of Pb(II) metal ions from aqueous solution. Nanoadsorbents based on graphene and its derivatives play a major role in the effective removal of toxic Pb(II) metal ions. This paper summarizes the applicability of graphene and functionalized graphene-based composite materials as Pb(II) ions adsorbent from aqueous solutions. In addition, the synthetic routes, adsorption process, conditions, as well as kinetic studies have been reviewed.
Collapse
|
8
|
Farshid B, Lalwani G, Mohammadi MS, Sankaran JS, Patel S, Judex S, Simonsen J, Sitharaman B. Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. J Biomed Mater Res A 2019; 107:1143-1153. [PMID: 30635968 DOI: 10.1002/jbm.a.36606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
This study investigates the mechanical properties and in vitro cytotoxicity of two-dimensional (2D) graphene oxide nanoribbons and nanoplatelets (GONRs and GONPs) reinforced porous polymeric nanocomposites. Highly porous poly(propylene fumarate) (PPF) nanocomposites were prepared by dispersing 0.2 wt % single- and multiwalled SONRs (SWGONRs and MWGONRs) and GONPs. The mechanical properties of scaffolds were characterized using compression testing and in vitro cytocompatibility was assessed using QuantiFlour assay for cellularity and PrestoBlue assay for cell viability. Immunofluorescence was used to assess collagen-I expression and deposition in the extracellular matrix. Porous PPF scaffolds were used as a baseline control and porous single and multiwalled carbon nanotubes (SWCNTs and MWCNTs) reinforced nanocomposites were used as positive controls. Results show that incorporation of 2D graphene nanomaterials leads to an increase in the mechanical properties of porous PPF nanocomposites with following the trend: MWGONRs > GONPs > SWGONRs > MWCNTs > SWCNTs > PPF control. MWGONRs showed the best enhancement of compressive mechanical properties with increases of up to 26% in compressive modulus (i.e., Young's modulus), ~60% in yield strength, and ~24% in the ultimate compressive strength. Addition of 2D nanomaterials did not alter the cytocompatibility of porous PPF nanocomposites. Furthermore, PPF nanocomposites reinforced with SWGONRs, MWGONRs, and GONPs show an improvement in the adsorption of collagen-I compared to PPF baseline control. The results of this study show that 2D graphene nanomaterial reinforced porous PPF nanocomposites possess superior mechanical properties, cytocompatibility, and increased protein adsorption. The favorable cytocompatibility results opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1143-1153, 2019.
Collapse
Affiliation(s)
- Behzad Farshid
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Meisam Shir Mohammadi
- Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon, 97331
- Department of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, 97331
| | | | - Sunny Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - John Simonsen
- Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon, 97331
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
9
|
Lerra L, Farfalla A, Sanz B, Cirillo G, Vittorio O, Voli F, Le Grand M, Curcio M, Nicoletta FP, Dubrovska A, Hampel S, Iemma F, Goya GF. Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics 2018; 11:E3. [PMID: 30583524 PMCID: PMC6359315 DOI: 10.3390/pharmaceutics11010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
Collapse
Affiliation(s)
- Luigi Lerra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Beatriz Sanz
- nB nanoSacale Biomagnetics SL, 50012 Zaragoza, Spain.
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-Oncoray, 01307 Dresden, Germany.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Gerardo F Goya
- Institute of Nanoscience of Aragon (INA), Department of Condensed Matter Physics, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
10
|
|
11
|
Vittorio O, Le Grand M, Makharza SA, Curcio M, Tucci P, Iemma F, Nicoletta FP, Hampel S, Cirillo G. Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. Eur J Pharm Biopharm 2017; 122:176-185. [PMID: 29129733 DOI: 10.1016/j.ejpb.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ± 0.6 and 18.4 ± 0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ± 0.7 and 22.9 ± 1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.
Collapse
Affiliation(s)
- Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Sami A Makharza
- College of Pharmacy and Medical Sciences, Hebron University, Hebron, Palestine
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
12
|
The morphological evolution of hydroxyapatite on high-efficiency Pb2+ removal and antibacterial activity. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
|
14
|
Wang X, Hao L, Zhang C, Chen J, Zhang P. High efficient anti-cancer drug delivery systems using tea polyphenols reduced and functionalized graphene oxide. J Biomater Appl 2017; 31:1108-1122. [PMID: 28084865 DOI: 10.1177/0885328216689364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Targeted drug delivery is urgently needed for cancer therapy, and green synthesis is important for the biomedical use of drug delivery systems in the human body. In this work, we report two targeted delivery systems for anticancer drugs based on tea polyphenol functionalized and reduced graphene oxide (TPGs). The obtained TPGs demonstrated an efficient doxorubicin loading capacity as high as 3.430 × 106 mg g−1 and 3.932 × 104 mg g−1, and exhibited pH-triggered release. Furthermore, the kinetic models, adsorption isotherms, and possible loading mechanisms were investigated in details. Compared to TPG1 and free doxorubicin, TPG2 is biocompatible to normal cells even at high concentrations and promotes tumor cells death by delivering the doxorubicin mainly to the nuclei. These results were confirmed using cell viability tests and confocal laser microscopy. Moreover, apoptosis tests showed that the mechanism of cancer cell death induced by TPG1 and TPG2 might follow the similar mechanisms. Taken together, these results demonstrate that TPGs provide a multifunctional drug delivery system with a greater loading capacity and pH-sensitive drug release for enhanced cancer therapy. The high drug payload capability and enhanced antitumor efficacy demonstrate that we developed systems are promising for various biomedical applications and cancer therapy.
Collapse
Affiliation(s)
- Xiaoqian Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, People's Republic of China
| |
Collapse
|
15
|
Gandhi MR, Vasudevan S, Shibayama A, Yamada M. Graphene and Graphene-Based Composites: A Rising Star in Water Purification - A Comprehensive Overview. ChemistrySelect 2016. [DOI: 10.1002/slct.201600693] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Atsushi Shibayama
- Department of Earth Resource Engineering and Environmental Science, Graduate School of International Resource Sciences; Akita University; 1-1 Tegatagakuen-machi Akita 010-8502 Japan
| | - Manabu Yamada
- Research Center for Engineering Science, Graduate School of Engineering Science; Akita University; 1-1 Tegatagakuen-machi Akita 010-8502 Japan
| |
Collapse
|
16
|
Santhana Krishna Kumar A, Jiang SJ. Preparation and characterization of exfoliated graphene oxide–l-cystine as an effective adsorbent of Hg(ii) adsorption. RSC Adv 2015. [DOI: 10.1039/c4ra12564a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hg(ii) adsorption involves,l-cystine bears amino group (–NH2) could interact with GO hydroxyl and carboxyl groups through covalent bond interaction.
Collapse
Affiliation(s)
| | - Shiuh-Jen Jiang
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424, Taiwan
- Department of Medical Laboratory Science and Biotechnology
- Kaohsiung Medical University
| |
Collapse
|
17
|
Zhao J, Wang Z, White JC, Xing B. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9995-10009. [PMID: 25122195 DOI: 10.1021/es5022679] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Graphene-family nanomaterials (GFNs) including pristine graphene, reduced graphene oxide (rGO) and graphene oxide (GO) offer great application potential, leading to the possibility of their release into aquatic environments. Upon exposure, graphene/rGO and GO exhibit different adsorption properties toward environmental adsorbates, thus the molecular interactions at the GFN-water interface are discussed. After solute adsorption, the dispersion/aggregation behaviors of GFNs can be altered by solution chemistry, as well as by the presence of colloidal particles and biocolloids. GO has different dispersion performance from pristine graphene and rGO, which is further demonstrated from surface properties. Upon exposure in aquatic environments, GFNs have adverse impacts on aquatic organisms (e.g., bacteria, algae, plants, invertebrates, and fish). The mechanisms of GFNs toxicity at the cellular level are reviewed and the remaining unclear points on toxic mechanisms such as membrane damage are presented. Moreover, we highlight the transformation routes of GO to rGO. The degradation of GFNs upon exposure to UV irradiation and/or biota is also reviewed. In view of the unanswered questions, future research should include comprehensive characterization of GFNs, new approaches for explaining GFNs aggregation, environmental behaviors of metastable GO, and the relationship between dispersion of GFNs and the related adsorption properties.
Collapse
Affiliation(s)
- Jian Zhao
- College of Environmental Science and Engineering, Key Laboratory of Ministry of Education, Ocean University of China , Qingdao 266100, China
| | | | | | | |
Collapse
|
18
|
Hu H, Xin JH, Hu H, Wang X, Lu X. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran. Molecules 2014; 19:7459-79. [PMID: 24914894 PMCID: PMC6270893 DOI: 10.3390/molecules19067459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/19/2023] Open
Abstract
In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD) was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB) into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.
Collapse
Affiliation(s)
- Huawen Hu
- The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - John H Xin
- The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hong Hu
- The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaowen Wang
- The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xinkun Lu
- The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
19
|
Hao L, Song H, Su Y, Lv Y. A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu2+ions in aqueous solution. Analyst 2014; 139:764-70. [DOI: 10.1039/c3an01943h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Gao H, Sun Y, Zhou J, Xu R, Duan H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS APPLIED MATERIALS & INTERFACES 2013; 5:425-32. [PMID: 23265565 DOI: 10.1021/am302500v] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a one-step approach to polydopamine-modified graphene hydrogel, with dopamine serving as both reductant and surface functionalization agents. The synthetic method is based on the spontaneous polymerization of dopamine and the self-assembly of graphene nanosheets into porous hydrogel structures. Benefiting from the abundant functional groups of polydopamine and the high specific surface areas of graphene hydrogel with three-dimensional interconnected pores, the prepared material exhibits high adsorption capacities toward a wide spectrum of contaminants, including heavy metals, synthetic dyes, and aromatic pollutants. Importantly, the free-standing graphene hydrogel can be easily removed from water after adsorption process, and can be regenerated by altering the pH values of the solution for adsorbed heavy metals or using low-cost alcohols for synthetic dyes and aromatic molecules.
Collapse
Affiliation(s)
- Hongcai Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | | | | | |
Collapse
|
21
|
Feng Y, Feng N, Du G. A green reduction of graphene oxide via starch-based materials. RSC Adv 2013. [DOI: 10.1039/c3ra43025a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|