1
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
2
|
Ren Y, Xie S, Svensson Grape E, Inge AK, Ramström O. Multistimuli-Responsive Enaminitrile Molecular Switches Displaying H +-Induced Aggregate Emission, Metal Ion-Induced Turn-On Fluorescence, and Organogelation Properties. J Am Chem Soc 2018; 140:13640-13643. [PMID: 30351138 DOI: 10.1021/jacs.8b09843] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multistimuli-responsive enaminitrile-based configurational switches displaying aggregation-induced emission (AIE), fluorescence turn-on effects, and supergelation properties are presented. The E-isomers dominated (>97%) in neutral/basic solution, and the structures underwent precisely controlled switching around the enamine C═C bond upon addition of acid/base. Specific fluorescence output was observed in response to different external input in the solution and solid states. In response to H+, configurational switching resulted in complete formation of the nonemissive Z-H+-isomers in solution, however displaying deep-blue to blue fluorescence (ΦF up to 0.41) in the solid state. In response to CuII in the solution state, the E-isomers exhibited intense, turn-on, blue-green fluorescence, which could be turned off by addition of competitive coordination. The acid/base-activated switching, together with the induced AIE-effects, further enabled the accomplishment of a responsive superorganogelator. In nonpolar solvents, a blue-fluorescent supramolecular gel was formed upon addition of acid to the E-isomer suspension. The gelation could be reversed by addition of base, and the overall, reversible process could be repeated at least five cycles.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Chemistry , Royal Institute of Technology , Teknikringen 36 , S-10044 Stockholm , Sweden
| | - Sheng Xie
- Department of Chemistry , Royal Institute of Technology , Teknikringen 36 , S-10044 Stockholm , Sweden.,College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry , Stockholm University , SE-10691 , Stockholm , Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry , Stockholm University , SE-10691 , Stockholm , Sweden
| | - Olof Ramström
- Department of Chemistry , Royal Institute of Technology , Teknikringen 36 , S-10044 Stockholm , Sweden.,Department of Chemistry , University of Massachusetts Lowell , One University Avenue , Lowell , Massachusetts 01854 , United States.,Department of Chemistry and Biomedical Sciences , Linnaeus University , SE-39182 Kalmar , Sweden
| |
Collapse
|
3
|
Abstract
This feature article surveys the various ways by which a structurally simple hydrazone can be used in accessing different functional materials, mainly photo/chemically activated switches, fluorophores and sensors.
Collapse
|
4
|
CNRS Silver and Bronze Medals 2016 / Izatt-Christensen Award: H. F. Sleiman / Cram Lehn Pedersen Prize: I. Aprahamian. Angew Chem Int Ed Engl 2016; 55:6819-20. [DOI: 10.1002/anie.201604168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Silber- und Bronzemedaillen des CNRS 2016 / Izatt-Christensen-Preis: H. F. Sleiman / Cram-Lehn-Pedersen-Preis: I. Aprahamian. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zha D, You L. Multiresponsive Dynamic Covalent Assemblies for the Selective Sensing of Both Cu(2+) and CN(-) in Water. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2399-2405. [PMID: 26720908 DOI: 10.1021/acsami.5b11552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of dynamic assembly for molecular sensing is an intensive area of research in supramolecular chemistry. However, the development of self-assembly architectures for the detection of multiple signals remains challenging. Here, we present dynamic covalent assemblies with multiresponsive properties that also show unique selectivity profiles in water. The receptors were generated in a single step with modularly designed building blocks through acylhydrazone linkages, and their orthogonal assembly with a series of external stimuli was investigated. Notably, the system exhibits responses toward cations, anions, solvents, pH, and amphiphilicity. The discrimination of Cu(2+) from other divalent metal ions was achieved by simply changing the solvent and was evidenced by a Cu(2+)-induced pKa shift. The selective recognition of CN(-) in pure aqueous media was also accomplished through a cooperative effect in conjunction with Zn(2+). Furthermore, the assembly and its responsiveness are functional both in solution and the solid state. The aggregation ability of these dynamic covalent systems supports their binding and sensing properties.
Collapse
Affiliation(s)
- Daijun Zha
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 35002, P. R. China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 35002, P. R. China
| |
Collapse
|
7
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|