1
|
Xue H, Wu ZY, Zhang JL. Fluorination of porphyrin β-periphery boosts nickel(II)-catalyzed hydrogen evolution reaction. J Inorg Biochem 2024; 254:112516. [PMID: 38471287 DOI: 10.1016/j.jinorgbio.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Tunichlorin, the naturally occurring chlorophyll cofactor containing Ni(II) ion, sets up a golden standard for designing the electrocatalysts for hydrogen evolution reaction (HER) via β-peripheral modification. Besides the fine-tuning of the porphyrin β-periphery such as adjusting the aromatics (the saturated level of tetrapyrrole) or installing hydroxyl group (hydrogen bond network) to enhance the catalytic HER efficiency, here we report that β-fluorination of porphyrin is also an important approach to increase the reactivity of Ni(II) center. Benefiting the previously reported derivatization of β-fluorinated porpholactones, we constructed a β-fluorinated tunichlorin mimic (6). Compared with the non-fluorinated analogs (1, 3, and 5), we found that 2, 4, and 6 exhibit significant electrocatalytic HER reactivity acceleration (in terms of turnover frequencies, TOF, s-1) of ca. 37, 170, 133-fold, respectively. Mechanism studies suggested that β-fluorination negatively shifts the metal complexes' reduction potentials and accelerates the electron transfer process, both contributing to the boosting of HER reaction. Notably, 6 showed an 890-fold increase of TOFs than 1, demonstrating the combining advantages of the of fluorination, hydrogenation, and hydroxylation at porphyrin β-periphery.
Collapse
Affiliation(s)
- Haozong Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Zhuo-Yan Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Zhang H, Wu JH, Xue HZ, Zhang R, Yang ZS, Gao S, Zhang JL. Biomimetically constructing a hypoxia-activated programmable phototheranostics at the molecular level. Chem Sci 2022; 13:8979-8988. [PMID: 36091208 PMCID: PMC9365088 DOI: 10.1039/d2sc02554j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
A programmable strategy at the molecular level to modulate the ratio of a catalyst and photosensitizer to maximize the collaborative efficiency of anti-angiogenesis and PDT.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jia-Hui Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao-Zong Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
3
|
Pino-Rios R, Montenegro-Pohlhammer N, Cárdenas-Jirón G. Assessment of New Expanded Porpholactones as UV/Vis/NIR Chromophores for Dye-Sensitized Solar Cell Applications. J Phys Chem A 2021; 125:2267-2275. [PMID: 33724841 DOI: 10.1021/acs.jpca.0c11188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expanded porphyrins arise as an alternative for potential application as chromophores in dye-sensitized solar cells. (DSSCs). The modification of the core of these compounds provides remarkable changes in the photoelectronic behavior. In the present article, the improvement of its properties for a potential application as UV/vis/NIR chromophores in DSSCs has been studied, when an oxazolone moiety has replaced an imine ring in analogy to the porpholactones first synthesized by Crossley et al. ( J. Chem. Soc., Chem. Commun. 1984, 920-922). These expanded porpholactones present a noticeable red shift as well as an increase in the intensity of the Q-bands regarding the parent compounds. The photophysical properties of Sapphyrin have been explored through DFT calculations and vibrationally resolved absorption spectra simulations. Energetic parameters showed favorable electron injection from the chromophore to the TiO2 semiconductor. In addition, aromaticity was analyzed and rationalized using magnetic and delocalization criteria. Results showed qualitatively similar trends between aromaticity descriptors and Q bands giving a great opportunity to the use this property in the rational design of chromophores. Finally, the nonequilibrium Green's function formalism shows the ability of expanded porpholactones in electron transport.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratorio de Química Teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), 8320000 Santiago, Chile
| | - Nicolás Montenegro-Pohlhammer
- Laboratorio de Química Teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), 8320000 Santiago, Chile.,Departamento de Química Física, Universidad de Sevilla, c/Profesor García González, s/n, 41012 Sevilla, Spain
| | - Gloria Cárdenas-Jirón
- Laboratorio de Química Teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), 8320000 Santiago, Chile
| |
Collapse
|
4
|
Jin GQ, Xue HZ, Zhang JL. Porpholactone Chemistry: Shining New Light on an Old Cofactor. Chempluschem 2020; 86:71-81. [PMID: 32844583 DOI: 10.1002/cplu.202000494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The emergence of porpholactone chemistry, discovered over 30 years ago, has significantly stimulated the development of biomimetic tetrapyrrole chemistry. It offers an opportunity, through modifications of non-pyrrolic building blocks, to clarify the relationship between chemical structure and excited-state properties, deciphering the structural code for the biological functions of life pigments. With intriguing photophysical properties in the red to near-infrared (NIR) regions, facile modulation of their electronic nature by fine-tuning chemical structures, and coordination ability with diverse metal ions, these novel porphyrinoids have favorable prospects in the fields of optical materials, bioimaging and therapy, and catalysis. In this Minireview, we summarize the brief history of porpholactone chemistry, and focus on the studies carried out in our group, particularly on the regioisomeric effect, NIR lanthanide luminescence, and metal catalysis. We outline the perspectives of these compounds in the construction of porpholactone-related biomedical applications and optical and energy materials, in order to inspire more interest and further advance bioinspired inorganic chemistry and lanthanide chemical biology.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Hao-Zong Xue
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
5
|
Tang J, Wang L, Loredo A, Cole C, Xiao H. Single-atom replacement as a general approach towards visible-light/near-infrared heavy-atom-free photosensitizers for photodynamic therapy. Chem Sci 2020; 11:6701-6708. [PMID: 32953031 PMCID: PMC7473402 DOI: 10.1039/d0sc02286a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022] Open
Abstract
Photodynamic therapy has become an emerging strategy for the treatment of cancer. This technology relies on the development of photosensitizers (PSs) that convert molecular oxygen to cytotoxic reactive oxygen species upon exposure to light. In this study, we have developed a facile and general strategy for obtaining visible light/near-infrared-absorbing PSs by performing a simple sulfur-for-oxygen replacement within existing fluorophores. Thionation of carbonyl groups within existing fluorophore cores leads to an improvement of the singlet oxygen quantum yield and molar absorption coefficient at longer wavelengths (deep to 600-800 nm). Additionally, these thio-based PSs lack dark cytotoxicity but exhibit significant phototoxicity against monolayer cancer cells and 3D multicellular tumor spheroids with IC50 in the micromolar range. To achieve tumor-specific delivery, we have conjugated these thio-based PSs to an antibody and demonstrated their tumor-specific therapeutic activity.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Lushun Wang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Axel Loredo
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Carson Cole
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Han Xiao
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
- Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
- Department of Bioengineering , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
| |
Collapse
|
6
|
Wu ZY, Xue H, Wang T, Guo Y, Meng YS, Li X, Zheng J, Brückner C, Rao G, Britt RD, Zhang JL. Mimicking of Tunichlorin: Deciphering the Importance of a β-Hydroxyl Substituent on Boosting the Hydrogen Evolution Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhuo-Yan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Haozong Xue
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Teng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yanru Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xingguo Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95161, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, California 95161, United States
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
7
|
Jin GQ, Ning Y, Geng JX, Jiang ZF, Wang Y, Zhang JL. Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01132c] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent developments and prospects of near-infrared molecular probes based on luminescent lanthanide coordination complexes in bioimaging are described, which is important to emphasise the importance of lanthanide chemical biology.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jing-Xing Geng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhi-Fan Jiang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yan Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
8
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Ning Y, Jin GQ, Zhang JL. Porpholactone Chemistry: An Emerging Approach to Bioinspired Photosensitizers with Tunable Near-Infrared Photophysical Properties. Acc Chem Res 2019; 52:2620-2633. [PMID: 31298833 DOI: 10.1021/acs.accounts.9b00119] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlorophylls, known as the key building blocks of natural light-harvesting antennae, are essential to utilize solar energy from visible to near-infrared (NIR) region during the photosynthesis process. The fundamental studies for the relationship between structure and photophysical properties of chlorophylls disclosed the importance of β-peripheral modification and thus boosted the fast growth of NIR absorbing/emissive porphyrinoids via altering the extent of π-conjugation and the degree of distortion from the planarity of macrocycle. Despite the tremendous progress made in various porphyrin-based synthetic models, it still remains a challenge to precisely modulate photophysical properties through fine-tuning of β-peripheral structures in the way natural chlorophylls do. With this in mind, we initiated a program and focused on meso-C6F5-substituted porpholactone (F20TPPL), in which one β-pyrrolic double bond was replaced by a lactone moiety, as an attractive platform to construct the bioinspired library of NIR porphyrinoids. In this Account, we summarize our recent contributions to the bioinspired design, synthesis, photophysical characterization, and applications of porpholactones and their derivatives. We have developed a general, convenient method to directly prepare porpholactones in large scale up to gram, which forms the chemical basis of porpholactone chemistry. By modulation of the saturation level and in particular regioisomerization of β-dilactone moieties, a synthetic library constituted by a series of porpholactones and their derivatives has been established. Thanks to the electron-withdrawing nature of lactone moiety, derivation of the saturation levels gives help to build stable models for chlorin, bacteriochlorin, and tunichlorin. It is worth noting that regioisomerization of dilactone moieties mimics the relative orientation of β-substituents in natural chlorophylls and hemes, which was considered as the key factor to tune NIR absorption and reactivity. Porpholactones can illustrate the capability of fine-tuning photophysical properties including the excited triplet states by subtle alteration of β-peripheral structures in the presence of transition metals and lanthanides (Ln). Furthermore, they can serve as efficient photosensitizers for singlet oxygen and NIR Ln, showing potential applications in cell imaging and photocytotoxicity studies. The high luminescence, tunable structures, high cellular uptake, and intense NIR absorption render them as promising and competitive candidates for theranostics in vitro and in vivo. Therefore, extending the studies of "porpholactone chemistry" not only tests the fundamental understanding of the structure-function relationship that governs NIR photophysical properties of natural tetrapyrrole cofactors such as chlorophylls but also provides the guiding principles for the bioinspired design of NIR luminescent molecular probes with various applications. Taken together, as a new synthetic porphyrin derivative, porpholactone chemistry shines light on synthetic porphyrin, bioinorganic, and lanthanide chemistry.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
10
|
Tian X, Hussain S, de Pace C, Ruiz-Pérez L, Battaglia G. Zn II Complexes for Bioimaging and Correlated Applications. Chem Asian J 2019; 14:509-526. [PMID: 30716209 DOI: 10.1002/asia.201801437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Indexed: 11/09/2022]
Abstract
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of life science, Anhui University, Hefei, 230039, P.R. China
| | - Sajid Hussain
- School of life science, Anhui University, Hefei, 230039, P.R. China.,School of Applied Sciences and Humanities (NUSASH), National University of Technology, Sector I-12, Islamabad, Pakistan
| | - Cesare de Pace
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- School of life science, Anhui University, Hefei, 230039, P.R. China.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
11
|
Ning Y, Tang J, Liu YW, Jing J, Sun Y, Zhang JL. Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging. Chem Sci 2018; 9:3742-3753. [PMID: 29780506 PMCID: PMC5939605 DOI: 10.1039/c8sc00259b] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2018] [Indexed: 12/27/2022] Open
Abstract
We report three synthetic methods to prepare biocompatible Yb3+ complexes, which displayed high NIR luminescence with quantum yields up to 13% in aqueous media. This renders β-fluorinated Yb3+ porphyrinoids a new class of NIR probes for living cell imaging including time-resolved fluorescence lifetime imaging.
Herein, we report the design and synthesis of biocompatible Yb3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb3+ luminescence signals when the biocompatible Yb3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Yi-Wei Liu
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Jing Jing
- School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | | | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| |
Collapse
|
12
|
Ning Y, Liu YW, Meng YS, Zhang JL. Design of Near-Infrared Luminescent Lanthanide Complexes Sensitive to Environmental Stimulus through Rationally Tuning the Secondary Coordination Sphere. Inorg Chem 2018; 57:1332-1341. [PMID: 29336570 DOI: 10.1021/acs.inorgchem.7b02750] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of near-infrared (NIR) emissive lanthanide (Ln) complexes sensitive to external stimulus is fundamentally important for the practical application of Ln materials. Because NIR emission from Ln is extremely sensitive to X-H (X = C, N and O) bond vibration, we herein report to harness the secondary coordination sphere to design NIR luminescent lanthanide sensors. Toward this goal, we designed and synthesized two isomeric [(η5-C5H5)Co{(D3CO)2P = O}3]-Yb(III)-7,8,12,13,17,18-hexafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porpholactol NIR emitters, Yb-up and Yb-down, based on the stereoisomerism of porphyrin peripheral β-hydroxyl group. Yb-up, in which β-OH is at the same side of Yb(III) center, can form an intramolecular hydrogen bond with the axial Kläui ligand, whereas Yb-down cannot because its β-OH is opposite to Yb(III) center. X-ray crystal structures and photophysical studies suggested that the intramolecular hydrogen bond plays important roles on the NIR luminescence of ytterbium(III), which shortens the distance between β-OH and Yb(III) and facilitates the nonradiative deactivation of Ln excited state. Importantly, Yb-up/down were demonstrated to be highly sensitive toward temperature and viscosity. The PMMA polymer using Yb-up as the dopant NIR emitter showed thermosensitivity up to 6.0% °C-1 in the wide temperature range of 77-400 K, higher than that of Yb-down (3.8% °C-1). These complexes were also explored as the first NIR viscosity sensor, revealing their potential applications as optical sensors without visible light interference. This work demonstrates the importance of secondary coordination sphere on designing NIR Ln luminescent functional materials.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Yi-Wei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, PR China
| |
Collapse
|
13
|
Yoshida K, Cha W, Kim D, Osuka A. Synthesis of Boron(III)-Coordinated Subchlorophins and Their Peripheral Modifications. Angew Chem Int Ed Engl 2017; 56:2492-2496. [PMID: 28112474 DOI: 10.1002/anie.201612277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 11/07/2022]
Abstract
A pyrrole-cleaving modification to transform boron(III) meso-triphenylsubporphyrin into boron(III) meso-triphenylsubchlorophin has been developed. Boron(III) subchlorophins thus synthesized show absorption and fluorescence spectra that are roughly similar to those of boron(III) subchlorins, but B-methoxy boron(III) subchlorophin showed considerably intensified fluorescence and a small Stokes shift. Peripheral modification reactions of B-phenyl boron(III) subchlorophin such as regioselective nitration with Cu(NO3 )2 ⋅3 H2 O, ipso-substitution reactions of boron(III) α-nitrosubchlorophin with CsF and CsCl, and Pd-catalyzed cross-coupling reactions of boron(III) α-chlorosubchlorophin with arylacetylenes, have been also explored to tune the optical properties of subchlorophins.
Collapse
Affiliation(s)
- Kota Yoshida
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wonhee Cha
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
Yoshida K, Cha W, Kim D, Osuka A. Synthesis of Boron(III)-Coordinated Subchlorophins and Their Peripheral Modifications. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kota Yoshida
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Wonhee Cha
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
15
|
Hu JY, Wu ZY, Chai K, Yang ZS, Meng YS, Ning Y, Zhang J, Zhang JL. β-Fluorinated porpholactones and metal complexes: synthesis, characterization and some spectroscopic studies. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00375g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe the synthesis of β-fluorinated porpholactones by oxidation of the fluorinated CC bond of the pyrrolic subunit in porphyrin using the “RuCl3 + Oxone®” protocol.
Collapse
Affiliation(s)
- Ji-Yun Hu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| | - Zhuo-Yan Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| | - Ke Chai
- College of Materials Science and Optoelectronics Technology
- University of Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| | - Jing Zhang
- College of Materials Science and Optoelectronics Technology
- University of Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| |
Collapse
|
16
|
Guberman-Pfeffer MJ, Greco JA, Samankumara LP, Zeller M, Birge RR, Gascón JA, Brückner C. Bacteriochlorins with a Twist: Discovery of a Unique Mechanism to Red-Shift the Optical Spectra of Bacteriochlorins. J Am Chem Soc 2016; 139:548-560. [DOI: 10.1021/jacs.6b12419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jordan A. Greco
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Lalith P. Samankumara
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Matthias Zeller
- Department
of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663, United States
| | - Robert R. Birge
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Department
of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, United States
| | - José A. Gascón
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Christian Brückner
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
17
|
Taniguchi M, Lindsey JS. Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. Chem Rev 2016; 117:344-535. [DOI: 10.1021/acs.chemrev.5b00696] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
18
|
Sharma M, Meehan E, Mercado BQ, Brückner C. β-Alkyloxazolochlorins: Revisiting the Ozonation of Octaalkylporphyrins, and Beyond. Chemistry 2016; 22:11706-18. [DOI: 10.1002/chem.201602028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Meenakshi Sharma
- Department of Chemistry; University of Connecticut; Storrs CT 06269-3060 USA
| | - Eileen Meehan
- Department of Chemistry; University of Connecticut; Storrs CT 06269-3060 USA
| | - Brandon Q. Mercado
- Chemical & Biophysical Instrumentation Center; Yale University, Chemistry Department; 350 Edwards St. New Haven CT 06511 USA
| | - Christian Brückner
- Department of Chemistry; University of Connecticut; Storrs CT 06269-3060 USA
| |
Collapse
|
19
|
Ke XS, Ning Y, Tang J, Hu JY, Yin HY, Wang GX, Yang ZS, Jie J, Liu K, Meng ZS, Zhang Z, Su H, Shu C, Zhang JL. Gadolinium(III) Porpholactones as Efficient and Robust Singlet Oxygen Photosensitizers. Chemistry 2016; 22:9676-86. [DOI: 10.1002/chem.201601517] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Xian-Sheng Ke
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Ji-Yun Hu
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Jialong Jie
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Kunhui Liu
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Zhao-Sha Meng
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Zongyao Zhang
- Department of Chemistry; Renmin University of China; Beijing 100872 P.R. China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| |
Collapse
|
20
|
Costa LD, Costa JIT, Tomé AC. Porphyrin Macrocycle Modification: Pyrrole Ring-Contracted or -Expanded Porphyrinoids. Molecules 2016; 21:320. [PMID: 27005605 PMCID: PMC6274216 DOI: 10.3390/molecules21030320] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, several synthetic strategies aiming at the peripheral functionalization of porphyrins were developed. Particularly interesting are those involving the modification of β-pyrrolic positions leading to pyrrole-modified porphyrins containing four-, five-, six- or seven-membered heterocycles. Azeteoporphyrins, porpholactones and morpholinoporphyrins are representative examples of such porphyrinoids. These porphyrin derivatives have recently gained an increasing interest due to their potential application in PDT, as multimodal imaging contrast agents, NIR-absorbing dyes, optical sensors for oxygen, cyanide, hypochlorite and pH, and in catalysis.
Collapse
Affiliation(s)
- Letícia D Costa
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana I T Costa
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|