1
|
Mocanu CS, Petre BA, Ion LD, Drochioiu G, Niculaua M, Stoica I, Homocianu M, Nita LE, Gradinaru VR. Structural Characterization of a New Collagen Biomimetic Octapeptide with Nanoscale Self‐assembly Potential: Experimental and Theoretical Approaches. Chempluschem 2021; 87:e202100462. [DOI: 10.1002/cplu.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Gabi Drochioiu
- Alexandru Ioan Cuza University of Iasi Chemistry ROMANIA
| | - Marius Niculaua
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Research Center for Oenology ROMANIA
| | - Iuliana Stoica
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Petru Poni Institute of Macromolecular Chemistry ROMANIA
| | - Mihaela Homocianu
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Petru Poni Institute of Macromolecular Chemistry ROMANIA
| | - Loredana Elena Nita
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Petru Poni Institute of Macromolecular Chemistry ROMANIA
| | - Vasile Robert Gradinaru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza Chemistry Carol av, No 11 700506 Iasi ROMANIA
| |
Collapse
|
2
|
Sharma A, Sharma P, Roy S. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering. SOFT MATTER 2021; 17:3266-3290. [PMID: 33730140 DOI: 10.1039/d0sm02202k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phenomenal advancement in regenerative medicines has led to the development of bioinspired materials to fabricate a biomimetic artificial extracellular matrix (ECM) to support cellular survival, proliferation, and differentiation. Researchers have diligently developed protein polymers consisting of functional sequences of amino acids evolved in nature. Nowadays, certain repetitive bioinspired polymers are treated as an alternative to synthetic polymers due to their unique properties like biodegradability, easy scale-up, biocompatibility, and non-covalent molecular associations which imparts tunable supramolecular architecture to these materials. In this direction, elastin has been identified as a potential scaffold that renders extensibility and elasticity to the tissues. Elastin-like polypeptides (ELPs) are artificial repetitive polymers that exhibit lower critical solution temperature (LCST) behavior in a particular environment than synthetic polymers and hence have gained extensive interest in the fabrication of stimuli-responsive biomaterials. This review discusses in detail the unique structural aspects of the elastin and its soluble precursor, tropoelastin. Furthermore, the versatility of elastin-like peptides is discussed through numerous examples that bolster the significance of elastin in the field of regenerative medicines such as wound care, cardiac tissue engineering, ocular disorders, bone tissue regeneration, etc. Finally, the review highlights the importance of exploring short elastin-mimetic peptides to recapitulate the structural and functional aspects of elastin for advanced healthcare applications.
Collapse
Affiliation(s)
- Archita Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| | | | | |
Collapse
|
3
|
Qin J, Sloppy JD, Kiick KL. Fine structural tuning of the assembly of ECM peptide conjugates via slight sequence modifications. SCIENCE ADVANCES 2020; 6:eabd3033. [PMID: 33028534 PMCID: PMC7541060 DOI: 10.1126/sciadv.abd3033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 05/07/2023]
Abstract
The self-assembly of nanostructures from conjugates of elastin-like peptides and collagen-like peptides (ELP-CLP) has been studied as means to produce thermoresponsive, collagen-binding drug delivery vehicles. Motivated by our previous work in which ELP-CLP conjugates successfully self-assembled into vesicles and platelet-like nanostructures, here, we extend our library of ELP-CLP bioconjugates to a series of tryptophan/phenylalanine-containing ELPs and GPO-based CLPs [W2F x -b-(GPO) y ] with various domain lengths to determine the impact of these modifications on the thermoresponsiveness and morphology. The lower transition temperature of the conjugates with longer ELP or CLP domains enables the formation of well-defined nanoparticles near physiological temperature. Moreover, the morphological transition from vesicles to platelet-like nanostructures occurred when the ratio of the lengths of ELP/CLP decreased. Given the previously demonstrated ability of many ELP-CLP bioconjugates to bind to both hydrophobic drugs and collagen-containing materials, our results suggest new opportunities for designing specific thermoresponsive nanostructures for targeted biological applications.
Collapse
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jennifer D Sloppy
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Delaware Biotechnology Institute, Newark, DE 19711, USA
| |
Collapse
|
4
|
Ariawan AD, Sun B, Wojciechowski JP, Lin I, Du EY, Goodchild SC, Cranfield CG, Ittner LM, Thordarson P, Martin AD. Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides. SOFT MATTER 2020; 16:4800-4805. [PMID: 32400837 DOI: 10.1039/d0sm00320d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide hydrogels show great promise as extracellular matrix mimics due to their tuneable, fibrous nature. Through incorporation of polar cationic, polar anionic or polar neutral amino acids into the Fmoc-diphenylalanine motif, we show that electrostatic charge plays a key role in the properties of the subsequent gelators. Specifically, we show that an inverse relationship exists for biocompatibility in the solution state versus the gel state for cationic and anionic peptides. Finally, we use tethered bilayer lipid membrane (tBLM) experiments to suggest a likely mode of cytotoxicity for tetrapeptides which exhibit cytotoxicity in the solution state.
Collapse
Affiliation(s)
- A Daryl Ariawan
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aldilla VR, Chen R, Martin AD, Marjo CE, Rich AM, Black DS, Thordarson P, Kumar N. Anthranilamide-based Short Peptides Self-Assembled Hydrogels as Antibacterial Agents. Sci Rep 2020; 10:770. [PMID: 31964927 PMCID: PMC6972728 DOI: 10.1038/s41598-019-57342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we describe the synthesis and molecular properties of anthranilamide-based short peptides which were synthesised via ring opening of isatoic anhydride in excellent yields. These short peptides were incorporated as low molecular weight gelators (LMWG), bola amphiphile, and C3-symmetric molecules to form hydrogels in low concentrations (0.07-0.30% (w/v)). The critical gel concentration (CGC), viscoelastic properties, secondary structure, and fibre morphology of these short peptides were influenced by the aromaticity of the capping group or by the presence of electronegative substituent (namely fluoro) and hydrophobic substituent (such as methyl) in the short peptides. In addition, the hydrogels showed antibacterial activity against S. aureus 38 and moderate toxicity against HEK cells in vitro.
Collapse
Affiliation(s)
- Vina R Aldilla
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Renxun Chen
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Adam D Martin
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Anne M Rich
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David StC Black
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Pall Thordarson
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney NSW, Sydney, 2052, Australia.
| |
Collapse
|
6
|
Farahani AD, Martin AD, Iranmanesh H, Bhadbhade MM, Beves JE, Thordarson P. Gel- and Solid-State-Structure of Dialanine and Diphenylalanine Amphiphiles: Importance of C⋅⋅⋅H Interactions in Gelation. Chemphyschem 2019; 20:972-983. [PMID: 30784156 DOI: 10.1002/cphc.201801104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/13/2019] [Indexed: 12/26/2022]
Abstract
To investigate the role of the capping group in the solution and solid-state self-assembly of short peptide amphiphiles, dialanine and diphenylalanine have been linked via the N-terminus to a benzene (phenyl) and 3-naphthyl capping groups using three different methylene linkers; (CH2 )n , n=0-4 for the benezene and 0, 1 and 2 for the naphthalene capping group. Atomic force microscopy (AFM), oscillatory rheology, circular dichroism (CD), and IR analysis have been employed to understand the properties of these peptide-based hydrogels. Several X-ray structures of these short peptide gelators give useful conformational information regarding packing. A comparison of these solid state structures with their gel state properties yielded greater insights into the process of self-assembly in short peptide gelators, particularly in terms of the important role of C⋅⋅⋅H interactions appear to play in determining if a short aromatic peptide does form a gel or not.
Collapse
Affiliation(s)
- Abbas D Farahani
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam D Martin
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hasti Iranmanesh
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohan M Bhadbhade
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Qin J, Luo T, Kiick KL. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules 2019; 20:1514-1521. [DOI: 10.1021/acs.biomac.8b01681] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology
Institute, Newark, Delaware 19711, United States
| |
Collapse
|
8
|
Aye SSS, Li R, Boyd-Moss M, Long B, Pavuluri S, Bruggeman K, Wang Y, Barrow CR, Nisbet DR, Williams RJ. Scaffolds Formed via the Non-Equilibrium Supramolecular Assembly of the Synergistic ECM Peptides RGD and PHSRN Demonstrate Improved Cell Attachment in 3D. Polymers (Basel) 2018; 10:E690. [PMID: 30960615 PMCID: PMC6404015 DOI: 10.3390/polym10070690] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023] Open
Abstract
Self-assembling peptides (SAPs) are a relatively new class of low molecular weight gelators which immobilize their solvent through the spontaneous formation of (fibrillar) nanoarchitectures. As peptides are derived from proteins, these hydrogels are ideal for use as biocompatible scaffolds for regenerative medicine. Importantly, due to the propensity of peptide sequences to act as signals in nature, they are easily functionalized to be cell instructive via the inclusion of bioactive epitopes. In nature, the fibronectin peptide sequence, arginine-glycine-aspartic acid (RGD) synergistically promotes the integrin α₅β₁ mediated cell adhesion with another epitope, proline-histidine-serine-arginine-asparagine (PHSRN); however most functionalization strategies focus on RGD alone. Here, for the first time, we discuss the biomimetic inclusion of both these sequences within a self-assembled minimalistic peptide hydrogel. Here, based on our work with Fmoc-FRGDF (N-flourenylmethyloxycarbonyl phenylalanine-arginine-glycine-aspartic acid-phenylalanine), we show it is possible to present two epitopes simultaneously via the assembly of the epitopes by the coassembly of two SAPs, and compare this to the effectiveness of the signals in a single peptide; Fmoc-FRGDF: Fmoc-PHSRN (N-flourenylmethyloxycarbonyl-proline-histidine-serine-arginine-asparagine) and Fmoc-FRGDFPHSRN (N-flourenylmethyloxycarbonyl-phenylalanine-arginine-glycine-asparticacid-phenylalanine-proline-histidine-serine-arginine-asparagine). We show both produced self-supporting hydrogel underpinned by entangled nanofibrils, however, the stiffness of coassembled hydrogel was over two orders of magnitude higher than either Fmoc-FRGDF or Fmoc-FRGDFPHSRN alone. In-vitro three-dimensional cell culture of human mammary fibroblasts on the hydrogel mixed peptide showed dramatically improved adhesion, spreading and proliferation over Fmoc-FRGDF. However, the long peptide did not provide effective cell attachment. The results demonstrated the selective synergy effect of PHSRN with RGD is an effective way to augment the robustness and functionality of self-assembled bioscaffolds.
Collapse
Affiliation(s)
- San-Seint S Aye
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Rui Li
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Mitchell Boyd-Moss
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
| | - Benjamin Long
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia.
| | - Sivapriya Pavuluri
- School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Kiara Bruggeman
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Yi Wang
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Colin R Barrow
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - David R Nisbet
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Richard J Williams
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
| |
Collapse
|