1
|
Fang Q, Qin Y, Wang H, Xu W, Yan H, Jiao L, Wei X, Li J, Luo X, Liu M, Hu L, Gu W, Zhu C. Ultra-Low Content Bismuth-Anchored Gold Aerogels with Plasmon Property for Enhanced Nonenzymatic Electrochemical Glucose Sensing. Anal Chem 2022; 94:11030-11037. [PMID: 35881968 DOI: 10.1021/acs.analchem.2c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective glucose surveillance provides a strong guarantee for the high-quality development of human health. Au nanomaterials possess compelling applications in nonenzymatic electrochemical glucose biosensors owing to superior catalytic performances and intriguing biocompatibility properties. However, it has been a grand challenge to accurately control the architecture and composition of Au nanomaterials to optimize their optical, electronic, and magnetic properties for further improving the performance of electrocatalytic sensing. Herein, ultra-low content Bi-anchored Au aerogels are synthesized via a one-step reduction strategy. Benefiting from the unique structure of aerogels as well as the synergistic effect between Au and Bi, the optimized Au200Bi aerogels greatly boost the activity of glucose oxidation compared with Au aerogels. Under plasmon resonance excitation, bimetallic Au200Bi aerogels with wider photics-dependent properties further show plasmon-promoted glucose electro-oxidation activity, which is derived from the photothermal and photoelectric effects caused by the local surface plasmon resonance. Thanks to the enhanced performance, a nonenzymatic electrochemical glucose biosensor is constructed to detect glucose with high sensitivity. This plasmon-promoted electrocatalytic activity through the synergetic strategy of bimetallic aerogels has potential applications in various research fields.
Collapse
Affiliation(s)
- Qie Fang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Qin
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiqing Xu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hongye Yan
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaoqian Wei
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jinli Li
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xin Luo
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Mingwang Liu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
3
|
El-Nagar GA, Delikaya Ö, Lauermann I, Roth C. Platinum Nanostructure Tailoring for Fuel Cell Applications Using Levitated Water Droplets as Green Chemical Reactors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22398-22407. [PMID: 31150204 DOI: 10.1021/acsami.9b05156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tailoring of nanostructured materials with well-controlled morphologies and their integration into valuable applications in a facile, cheap, and green way remain a key challenge. Herein, platinum nanoparticles as well as Pt-polymer nanocomposites with unique shapes, including flower-, needle-, porous-, and worm-like structures, were synthesized and simultaneously deposited on a three-dimensional carbon substrate and carbon nanofibers in one step using a levitated, overheated water drop as a green, rotating chemical reactor. Sprinkling of a metal aqueous solution on a hot surface results in its sudden evaporation and creates an overheated zone along with the water self-ionization (i.e., charge separation) at the hot interface. These generated Leidenfrost conditions are believed to induce a series of chemical reactions involving the used solvent and counterions, resulting in the nanoparticles formation. Besides, the in situ generated basic conditions in the vicinity of the liquid-vapor interface due to the loss of hydronium ions into the vapor layer could also play a role in the mechanism of the nanoparticles formation, e.g., by discharging. The as-prepared Pt nanostructures exhibited a superior catalytic activity and stability toward the desired direct formic acid oxidation (essential anodic reaction in fuel cells) into CO2 without generating CO poisoning intermediates compared to the state-of-the-art commercial PtC electrode. The addressed nanotailoring technique is believed to be a promising, inexpensive, and scalable way for the sustainable manufacture of well-designed nanomaterials for future applications.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Chemistry Department, Faculty of Science , Cairo University , 12613 Cairo , Egypt
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , 14195 Berlin , Germany
| | - Öznur Delikaya
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , 14195 Berlin , Germany
| | - Iver Lauermann
- PvcomB , Helmholtz-Zentrum Berlin für Materialien und Energie , 12489 Berlin , Germany
| | - Christina Roth
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , 14195 Berlin , Germany
| |
Collapse
|