1
|
Hirai S, Sakuma T, Tokura Y, Imai H, Seishima R, Shigeta K, Okabayashi K, Oaki Y. Free Volume Space of Polymers as a New Functional Nanospace: Synthesis of Guest Polymers. Macromol Rapid Commun 2025:e2400980. [PMID: 39887904 DOI: 10.1002/marc.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Nanospace has been used as a specific field for syntheses and assemblies of molecules, polymers, and materials. Free volume space among polymer chains is related to their properties, such as permeation of gas and small molecules. However, the void has not been used as a functional nanospace in previous works. The present work shows synthesis of guest conductive polymers in free volume space of conventional synthetic resins and rubbers as a new nanospace. Vapor of heteroaromatic monomer and oxidative agent is diffused into the soft dynamic nanospace among the polymer chains under ambient pressure at low temperature. The oxidative polymerization provides the conductive polymers, such as polypyrrole (PPy), in the free volume space of poly(methyl methacrylate) (PMMA), polypropylene (PP), silicone rubber (SR), and polyurethane rubber (PU). The ratio of the free volume decreases with the infiltration of the conductive polymers. The composites exhibit the improved mechanical and gas barrier properties. The rubbers containing PPy are used as mechanical-stress sensors with both the conductivity and flexibility. The free volume space of resins and rubbers can be used as a new dynamic nanospace for synthesis of functional polymer composites.
Collapse
Affiliation(s)
- Sayaka Hirai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Tomoki Sakuma
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuki Tokura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Ryo Seishima
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kohei Shigeta
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
2
|
Cardenas-Morcoso D, Debard J, Farzin F, Boscher ND. Triflate Salts as Alternative Non-Chlorinated Oxidants for the Oxidative Chemical Vapor Deposition and Electronic Engineering of Conjugated Polymers. Macromolecules 2024; 57:9627-9639. [PMID: 39465226 PMCID: PMC11500492 DOI: 10.1021/acs.macromol.4c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 10/29/2024]
Abstract
Oxidative chemical vapor deposition (oCVD) stands as an attractive approach for the synthesis, engineering, and integration of conjugated polymers for advanced electronic and optoelectronic applications. In oCVD, the oxidant significantly influences the conformational and optoelectronic properties of the resulting conjugated polymer thin films. In this work, triflate salts of iron(III) and copper(II) (Fe(OTf)3 and Cu(OTf)2, respectively) are investigated for the first time as suitable alternative oxidants to the widely used iron(III) chloride (FeCl3) for the oCVD of conjugated polymers. Structural and compositional characterizations of the resulting thin films evidenced the successful polymerization of cobalt(II) 5,15-diphenyl porphyrin using either Fe(OTf)3 or Cu(OTf)2. Along with an intermolecular dehydrogenative C-C coupling reaction, the occurrence of side reactions, such as the inclusion of -CF3 groups and demetalation and subsequent insertion of copper(II) in the porphyrin macrocycle when using Cu(OTf)2, were evidenced. Interestingly, the inclusion of -CF3 groups into the polymer backbone when using triflate salts results in a deepening of the frontier energy levels, while the insertion of copper(II) contributes to a reduction in the band gap energy. This work demonstrates that the careful selection of the oxidant agent in oCVD enables fine-tuning the optoelectronic properties of conjugated polymers to suit specific application requirements.
Collapse
Affiliation(s)
- Drialys Cardenas-Morcoso
- Material Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Justine Debard
- Material Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Faezeh Farzin
- Material Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Nicolas D. Boscher
- Material Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Aerathupalathu Janardhanan J, Yu HH. Recent advances in PEDOT/PProDOT-derived nano biosensors: engineering nano assemblies for fostering advanced detection platforms for biomolecule detection. NANOSCALE 2024; 16:17202-17229. [PMID: 39229680 DOI: 10.1039/d4nr01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the recent unprecedented emergence of a global pandemic, unknown diseases and new metabolic patterns expressing serious health issues, the requirement to develop new diagnostic tools, therapeutic solutions, and healthcare and environmental monitoring systems are significantly higher in the present situation. Considering that high sensitivity, selectivity, stability and a low limit of detection (LOD) are inevitable requirements for an ideal biosensor, the class of conducting polymers of poly(3,4-ethylenedioxythiophene) (PEDOT) and recently poly(3,4-propylenedioxythiophene) (PProDOT) materials have been demonstrated to be promising candidates for designing sensor devices. Nanostructure engineering of these polymeric materials with tunable surface properties and side chain functionalization to enable sensor probe conjugation combined with signal amplification devices such as OECTs and OFETs can fulfil the requirements of next-generation smart nano-biosensors. In this review, we analyze recent reports on PEDOT/PProDOT nanostructures and nanocomposites for developing nano-biosensors and their application in the detection of different biomarkers, environmental, toxicology, marine and aquatic monitoring, forensic and illicit drug detection, etc. In addition, we discuss the challenges associated with the design of PEDOT/PProDOT nano-biosensors and future perspectives on the exploration of novel sensor platforms, particularly PProDOT derivatives for bioelectronics and novel design strategies for next-generation smart nano-biosensors.
Collapse
Affiliation(s)
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory (SOML), Institute of Chemistry, Academia Sinica No. 128, Sec. 2, Nankang District, Taipei City 115201, Taiwan.
| |
Collapse
|
4
|
Tan C, Wang S, Barboza-Ramos I, Schanze KS. A Perspective Looking Backward and Forward on the 25th Anniversary of Conjugated Polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38584485 DOI: 10.1021/acsami.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conjugated polyelectrolytes are π-conjugated polymers that contain ionic charged groups such as sulfonate (R-SO3-), carboxylate (R-COO-), or ammonium (R-NR3+) combined with a π-conjugated backbone. This perspective provides a summary review of the key developments in the field, starting from the first reports of their synthesis and properties to application-focused developments. The applications include optical sensors for molecular and biomolecular targets, organic electronic applications, and specific biological applications including cellular imaging and photodynamic therapy. This perspective concludes with a discussion of where the field of conjugated polyelectrolytes is expected to lead in the coming years.
Collapse
Affiliation(s)
- Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
5
|
Paulino PHS, Guimarães L, Nascimento CS. Chemical modification and doping of poly(p-phenylenes): A theoretical study. J Mol Model 2024; 30:114. [PMID: 38558272 DOI: 10.1007/s00894-024-05920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT Conjugated polymers (CPs) have been recognized as promising materials for the manufacture of electronic devices. However, further studies are still needed to enhance the electrical conductivity of these type of organic materials. The two main strategies for achieving this improvement are the doping process and chemical modification of the polymer chain. Therefore, in this article, we conduct a theoretical investigation, employing DFT calculations to evaluate the structural, energetic, and electronic properties of pristine and push-pull-derived poly(p-phenylene) oligomers (PPPs), as well as the analysis at the molecular level of the polymer doping process. As a primary conclusion, we determined that the PPP oligomer substituted with the push-pull group 4-EtN/CNPhNO2 exhibited the smallest HOMO-LUMO gap (Eg) among the studied oligomers. Moreover, we observed that the doping process, whether through electron removal or the introduction of the dopant anion ClO4-, led to a substantial reduction in the Eg of the PPP, indicating an enhancement in the polymer's electrical conductivity. METHODS DFT calculations were conducted using the PBE0 functional along with the Pople's split valence 6-31G(d,p) basis set, which includes polarization functions on all atoms (B97D/6-31G(d,p)).
Collapse
Affiliation(s)
- Paulo Henrique S Paulino
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil
| | - Luciana Guimarães
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil
| | - Clebio S Nascimento
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil.
| |
Collapse
|
6
|
R. Hinojosa D, J. Pataki N, Rossi P, Erhardt A, Guchait S, Pallini F, McNeill C, Müller C, Caironi M, Sommer M. Solubilizing Benzodifuranone-Based Conjugated Copolymers with Single-Oxygen-Containing Branched Side Chains. ACS APPLIED POLYMER MATERIALS 2024; 6:457-465. [PMID: 38230364 PMCID: PMC10788869 DOI: 10.1021/acsapm.3c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Single-oxygen-containing branched side chains are designed and used to solubilize n-type copolymers consisting of BDF (benzodifuranone), isatin, and thiophene-based units. We present a simple synthetic approach to side chains with varying linker distances between the backbone and the branching point. The synthetic pathway is straightforward and modular and starts with commercially available reagents. The side chains give rise to excellent solubilities of BDF-thiophene copolymers of up to 90 mg/mL, while still being moderate in size (26-34 atoms large). The excellent solubility furthermore allows high molar mass materials. BDF-thiophene copolymers are characterized in terms of optoelectronic and thermoelectric properties. The electrical conductivity of chemically doped polymers is found to scale with molar mass, reaching ∼1 S/cm for the highest molar mass and longest backbone-branching point distance.
Collapse
Affiliation(s)
- Diego R. Hinojosa
- Institut
für Chemie, Technische Universität
Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
- Forschungszentrum
MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Nathan J. Pataki
- Center
for Nano Science and Technology, Via Rubattino 81, 20134 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milano ,Italy
| | - Pietro Rossi
- Center
for Nano Science and Technology, Via Rubattino 81, 20134 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milano ,Italy
| | - Andreas Erhardt
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Shubhradip Guchait
- Institute
Charles Sadron, Université de Strasbourg, Strasbourg F-67000, France
| | - Francesca Pallini
- Department
of Materials Science, Università
di Milano-Bicocca, via
Cozzi 55, 20125 Milan, Italy
| | - Christopher McNeill
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering Chalmers
University of Technology Göteborg 412 96, Sweden
| | - Mario Caironi
- Center
for Nano Science and Technology, Via Rubattino 81, 20134 Milano, Italy
| | - Michael Sommer
- Institut
für Chemie, Technische Universität
Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
- Forschungszentrum
MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| |
Collapse
|
7
|
Ibraheem HA, El-Hiti GA, Yousif E, Ahmed DS, Hashim H, Kariuki BM. Investigation of the Impact of Chemical Modifications on the Photostability of Polymethyl Methacrylate. INT J POLYM SCI 2024; 2024. [DOI: 10.1155/2024/3354280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 01/05/2025] Open
Abstract
For practical application, it is crucial to ensure that polymeric materials are protected against degradation due to aging and ultraviolet (UV) irradiation. A range of advancements in developing novel photostabilizers has been made in the last few years. Another approach is the alteration of polymer structures to enhance their ability to resist photodegradation and photooxidation on exposure to UV light for extended periods in harsh conditions. Polymeric chain modifications have proved to be efficient in increasing the photostability of materials. The current work deals with the surface functionalization of polymethyl methacrylate (PMMA) by incorporating organotin moieties on the polymer backbone. PMMA reacts with ethylenediamine to attach amino groups to the polymer chains. The amino group reacts with 2‐hydroxynaphthaldehyde to produce the corresponding Schiff base. Adding trisubstituted (methyl, butyl, and phenyl) tin chloride led to the addition of organometallic residence to the polymeric chains. Thin films of the modified PMMA were made and irradiated with ultraviolet light for long durations to test the effect of chain modification on the photostability of polymeric materials. The effect of the substituent on the tin atom on the photostability of PMMA has been analyzed. Various methods were used for assessment, including infrared spectroscopy, weight loss, surface morphology, and roughness factor. The modified polymers showed increased resistance to photodegradation and had lower roughness factor, weight reduction, surface damages, and small fragments generated compared to the blank PMMA. The polymer containing phenyl substituents showed the most apparent photostabilization effect and the least destructive changes in the PMMA surface on photoirradiation.
Collapse
|
8
|
Atsuta Y, Takeuchi K, Shioda N, Hamada W, Hirai T, Nakamura Y, Oaki Y, Fujii S. Colloidally Stable Polypyrrole Nanoparticles Synthesized by Surfactant-Free Coupling Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14984-14995. [PMID: 37831595 DOI: 10.1021/acs.langmuir.3c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Surfactant-free polypyrrole (PPy) nanoparticles, which were colloidally stable in aqueous medium, were successfully synthesized by coupling polymerization of pyrrole using Fe(NO3)3 solids in the absence of any colloidal stabilizer. The pyrrole monomers were gradually supplied from the vapor phase, and the coupling reaction of the monomers could proceed to generate PPy in a water medium. The resulting PPy nanoparticles were extensively characterized in terms of diameter, bulk chemical composition, surface chemistry, and colloidal stability by dynamic light scattering, electron microscopy, elemental microanalysis, Fourier transform infrared spectroscopy, Raman spectroscopy, electrophoresis, and X-ray photoelectron spectroscopy. The characterization results indicated that the PPy nanoparticles can be colloidally stable based on the electrostatic stabilization mechanism due to cationic charges generated on the PPy molecules by doping during the polymerization. General chemical oxidative polymerization in aqueous medium using the Fe(NO3)3 oxidant without a colloidal stabilizer as a control experiment resulted in generation of atypical PPy aggregates with over a micrometer size, indicating that the polymerization at low ionic strength is essential for colloidal particle formation. Finally, it was demonstrated that the PPy nanoparticles worked as a surfactant-free black-colored particulate emulsifier by adsorption at the oil-water interface to stabilize Pickering-type oil-in-water emulsions.
Collapse
Affiliation(s)
- Yuya Atsuta
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Nano Shioda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Wakana Hamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| |
Collapse
|
9
|
Abstract
Rapid and specific assaying of molecules that report on a pathophysiological condition, environmental pollution, or drug concentration is pivotal for establishing efficient and accurate diagnostic systems. One of the main components required for the construction of these systems is the recognition element (receptor) that can identify target analytes. Oligonucleotide switching structures, or aptamers, have been widely studied as selective receptors that can precisely identify targets in different analyzed matrices with minimal interference from other components in an antibody-like recognition process. These aptasensors, especially when integrated into sensing platforms, enable a multitude of sensors that can outperform antibody-based sensors in terms of flexibility of the sensing strategy and ease of deployment to areas with limited resources. Research into compounds that efficiently enhance signal transduction and provide a suitable platform for conjugating aptamers has gained huge momentum over the past decade. The multifaceted nature of conjugated polymers (CPs), notably their versatile electrical and optical properties, endows them with a broad range of potential applications in optical, electrical, and electrochemical signal transduction. Despite the substantial body of research demonstrating the enhanced performance of sensing devices using doped or nanostructure-embedded CPs, few reviews are available that specifically describe the use of conjugated polymers in aptasensing. The purpose of this review is to bridge this gap and provide a comprehensive description of a variety of CPs, from a historical viewpoint, underpinning their specific characteristics and demonstrating the advances in biosensors associated with the use of these conjugated polymers.
Collapse
Affiliation(s)
- Razieh Salimian
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| |
Collapse
|
10
|
El Haitami A, Resmerita AM, Ursu LE, Asandulesa M, Cantin S, Farcas A. Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air-Water Interface. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4757. [PMID: 37445070 DOI: 10.3390/ma16134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Two poly(3,4-ethylenedioxythiophene) polyrotaxanes (PEDOT∙TMe-βCD and PEDOT∙TMe-γCD) end-capped by pyrene (Py) were synthesized by oxidative polymerization of EDOT encapsulated into TMe-βCD or TMe-γCD cavities with iron (III) chloride (FeCl3) in water and chemically characterized. The effect of TMe-βCD or TMe-γCD encapsulation of PEDOT backbones on the molecular weight, thermal stability, and solubility were investigated in depth. UV-vis absorption, fluorescence (FL), phosphorescence (PH), quantum efficiencies, and lifetimes in water and acetonitrile were also explored, together with their surface morphology and electrical properties. Furthermore, dynamic light scattering was used to study the hydrodynamic diameter (DH) and z-potential (ZP-ζ) of the water soluble fractions of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD. PEDOT∙TMe-βCD and PEDOT∙TMe-γCD exhibited a sharp monodisperse peak with a DH of 55 ± 15 nm and 122 ± 32 nm, respectively. The ZP-ζ value decreased from -31.23 mV for PEDOT∙TMe-βCD to -20.38 mV for PEDOT∙TMe-γCD, indicating that a negatively charged layer covers their surfaces. Surface pressure-area isotherms and Brewster angle microscopy (BAM) studies revealed the capability of the investigated compounds to organize into sizeable and homogeneous 2D supramolecular assemblies at the air-water interface. The control of the 2D monolayer organization through the thermodynamic parameters of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD suggests potential for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Alae El Haitami
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Ana-Maria Resmerita
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Mihai Asandulesa
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Sophie Cantin
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Aurica Farcas
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
11
|
Zhou C, Chia GWN, Yong KT. Membrane-intercalating conjugated oligoelectrolytes. Chem Soc Rev 2022; 51:9917-9932. [PMID: 36448452 DOI: 10.1039/d2cs00014h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
By acting as effective biomimetics of the lipid bilayers, membrane-intercalating conjugated oligoelectrolytes (MICOEs) can spontaneously insert themselves into both synthetic lipid bilayers and biological membranes. The modular and intentional molecular design of MICOEs enable a range of applications, such as bioproduction, biocatalysis, biosensing, and therapeutics. This tutorial review provides a structural evolution of MICOEs, which originated from the broader class of conjugated molecules, and analyses the drivers behind this evolutionary process. Various representative applications of MICOEs, accompanied by insights into their molecular design principles, will be reviewed separately. Perspectives on the current challenges and opportunities in research on MICOEs will be discussed at the end of the review to highlight their potential as unconventional and value-added materials for biological systems.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China. .,Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Geraldine W N Chia
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney 2006, New South Wales, Australia.
| |
Collapse
|
12
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
13
|
Pinyou P, Blay V, Monkrathok J, Janphuang P, Chansaenpak K, Pansalee J, Lisnund S. A facile method for generating polypyrrole microcapsules and their application in electrochemical sensing. Mikrochim Acta 2022; 189:410. [PMID: 36208339 PMCID: PMC9547802 DOI: 10.1007/s00604-022-05512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
A facile and rapid strategy to generate polypyrrole microcapsules is reported. The strategy is compatible with a vortex mixer and with a microfluidic chip for droplet generation, allowing a > 100-fold reduction in particle size. The sub-micron particle sizes obtained can also be tuned to some extent based on the chip geometry. The capsules can be kept stably in solution and can be transferred onto electrochemical devices. As an application example, we casted the polypyrrole capsules generated onto screen-printed electrodes, leading to a significant increase in their electroactive surface area and capacitance. The electrodes were further modified with glucose dehydrogenase (GDH) to fabricate glucose biosensors. The introduction of polypyrrole microcapsules increased the dynamic range of the glucose sensor to ca. 300% compared with that of the electrode without polypyrrole microcapsules. The resulting glucose sensor is operated at a constant applied potential of 0.20 V vs. Ag/AgCl (3 M KCl) in an air-equilibrated electrolyte. At this potential, the sensor showed a linear range from 1.0 to 9.0 mM glucose with a sensitivity of 3.23 µA cm−2 mM−1 (R2 = 0.993). The limit of detection obtained was 0.09 mM, and the reproducibility was 3.6%. The method allows generating polypyrrole microcapsules without surfactants or organic solvents and may enable new opportunities in the design of biosensors, electronic devices, and molecular delivery.
Collapse
Affiliation(s)
- Piyanut Pinyou
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima, 30000, Thailand.
| | - Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Jirawan Monkrathok
- Synchrotron Light Research Institute, 111 University Ave., Nakhon Ratchasima, 30000, Thailand.,Institute of Research and Development, Suranaree University of Technology, 111 University Ave.., Nakhon Ratchasima, 30000, Thailand
| | - Pattanaphong Janphuang
- Synchrotron Light Research Institute, 111 University Ave., Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jaruwan Pansalee
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima, 30000, Thailand
| | - Sireerat Lisnund
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, 744, Suranarai Rd., Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
14
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
15
|
Visible Light Enhanced Photosynthesis of C-C bonds using PdO/Pd@PEDOT nanocomposite. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
King AJ, Zhukhovitskiy AV. A Chain‐Growth Mechanism for Conjugated Polymer Synthesis Facilitated by Dinuclear Complexes with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022; 61:e202206044. [DOI: 10.1002/anie.202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew J. King
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| | - Aleksandr V. Zhukhovitskiy
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| |
Collapse
|
17
|
King AJ, Zhukhovitskiy AV. A Chain‐Growth Mechanism for Conjugated Polymer Synthesis Facilitated by Dinuclear Complexes with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrew J. King
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| | - Aleksandr V. Zhukhovitskiy
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 121 South Road Chapel Hill NC, 27514 USA
| |
Collapse
|
18
|
Seike M, Uda M, Suzuki T, Minami H, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS OMEGA 2022; 7:13010-13021. [PMID: 35474829 PMCID: PMC9026107 DOI: 10.1021/acsomega.2c00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 05/25/2023]
Abstract
Solvent-free chemical oxidative polymerizations of pyrrole and its derivatives, namely N-methylpyrrole and N-ethylpyrrole, were conducted by mechanical mixing of monomer and solid FeCl3 oxidant under nitrogen atmosphere. Polymerizations occurred at the surface of the oxidant, and optical and scanning electron microscopy studies confirmed production of atypical grains with diameters of a few tens of micrometers. Fourier transform infrared spectroscopy studies indicated the presence of hydroxy and carbonyl groups which were introduced during the polymerization due to overoxidation. The polymer grains were doped with chloride ions, and the chloride ion dopant could be removed by dedoping using an aqueous solution of sodium hydroxide, which was confirmed by elemental microanalysis and X-ray photoelectron spectroscopy studies. Water contact angle measurements confirmed that the larger the alkyl group on the nitrogen of pyrrole ring the higher the hydrophobicity and that the contact angles increased after dedoping in all cases. The grains before and after dedoping exhibited photothermal properties: the near-infrared laser irradiation induced a rapid temperature increase to greater than 430 °C. Furthermore, dedoped poly(N-ethylpyrrole) grains adsorbed to the air-water interface and could work as an effective liquid marble stabilizer. The resulting liquid marble could move on a planar water surface due to near-infrared laser-induced Marangoni flow and could disintegrate by exposure to acid vapor via redoping of the poly(N-ethylpyrrole) grains.
Collapse
Affiliation(s)
- Musashi Seike
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Makoto Uda
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Toyoko Suzuki
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Shinya Higashimoto
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
19
|
Mayhugh AL, Yadav P, Luscombe CK. Circular Discovery in Small Molecule and Conjugated Polymer Synthetic Methodology. J Am Chem Soc 2022; 144:6123-6135. [PMID: 35380440 PMCID: PMC9011355 DOI: 10.1021/jacs.1c12455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/20/2022]
Abstract
Simple and efficient methods are a key consideration for small molecule and polymer syntheses. Direct arylation polymerization (DArP) is of increasing interest for preparing conjugated polymers as an effective approach compared to conventional cross-coupling polymerizations. As DArP sees broader utilization, advancements are needed to access materials with improved properties and different monomer structures and to improve the scalability of conjugated polymer synthesis. Presented herein are considerations for developing new methods of conjugated polymer synthesis from small molecule transformations, exploring how DArP has successfully used this approach, and presenting how emerging polymerization methodologies are developing similarly. While it is common to adapt small molecule methods to polymerizations, we demonstrate the ways in which information gained from studying polymerizations can inform and inspire greater advancements in small molecule transformations. This circular approach to organic synthetic method development underlines the value of collaboration between small molecule and polymer-based synthetic research groups.
Collapse
Affiliation(s)
- Amy L. Mayhugh
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, Unites States
| | - Preeti Yadav
- pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Christine K. Luscombe
- pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
20
|
Cachaneski-Lopes JP, Batagin-Neto A. Effects of Mechanical Deformation on the Opto-Electronic Responses, Reactivity, and Performance of Conjugated Polymers: A DFT Study. Polymers (Basel) 2022; 14:polym14071354. [PMID: 35406228 PMCID: PMC9002523 DOI: 10.3390/polym14071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
The development of polymers for optoelectronic applications is an important research area; however, a deeper understanding of the effects induced by mechanical deformations on their intrinsic properties is needed to expand their applicability and improve their durability. Despite the number of recent studies on the mechanochemistry of organic materials, the basic knowledge and applicability of such concepts in these materials are far from those for their inorganic counterparts. To bring light to this, here we employ molecular modeling techniques to evaluate the effects of mechanical deformations on the structural, optoelectronic, and reactivity properties of traditional semiconducting polymers, such as polyaniline (PANI), polythiophene (PT), poly (p-phenylene vinylene) (PPV), and polypyrrole (PPy). For this purpose, density functional theory (DFT)-based calculations were conducted for the distinct systems at varied stretching levels in order to identify the influence of structural deformations on the electronic structure of the systems. In general, it is noticed that the elongation process leads to an increase in electronic gaps, hypsochromic effects in the optical absorption spectrum, and small changes in local reactivities. Such changes can influence the performance of polymer-based devices, allowing us to establish significant structure deformation response relationships.
Collapse
Affiliation(s)
| | - Augusto Batagin-Neto
- POSMAT, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil;
- Institute of Science and Engineering, São Paulo State University (UNESP), Itapeva 18409-010, SP, Brazil
- Correspondence: ; Tel.: +55-(15)-3524-9100 (ext. 9159)
| |
Collapse
|
21
|
Zhang Q, Chang M, Fan Z, Deng L, Lu Y. Direct (hetero)arylation polymerization, electrochemical and optical properties of regioregular 3-substituted polythiophenes with alkylsulphanyl and alkylsulfonyl groups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Laine RM. Unconventional Conjugation in macromonomers and polymers. Chem Commun (Camb) 2022; 58:10596-10618. [DOI: 10.1039/d2cc03968k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple reviews have been written concerning conjugated macromonomers and polymers both as general descriptions and for specific applications. In most examples, conjugation occurs via elec-tronic communication via continuous overlap of...
Collapse
|
23
|
Mouli MSSV, Mishra AK. Formation of the silver-flavin coordination polymers and their morphological studies. CrystEngComm 2022. [DOI: 10.1039/d2ce00071g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Communication describes the formation of 1D-coordination polymeric motifs involving modified flavin analog connected together through intervening silver ions. Rare bidentate coordination mode for model flavin was achieved with silver...
Collapse
|
24
|
Okabe Y, Yamada T, Okamoto S. Nickel-catalysed cycloaddition oligomerisation of 1,6-diynes to medium-size cyclic polyenes. Polym Chem 2022. [DOI: 10.1039/d2py01033j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalysed reaction of 1,6-diynes produced cyclic polyene oligomers with a narrow PDI. Their thermal isomerization gave the regio-isomeric cyclic polyenes consisting of trans-disubstituted alkenes.
Collapse
Affiliation(s)
- Yuhsaku Okabe
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
25
|
Sumdani MG, Islam MR, Yahaya ANA, Safie SI. Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Md Gulam Sumdani
- Malaysian Institute of Chemical and Bio‐engineering Technology, Universiti Kuala Lumpur Kuala Lumpur Malaysia
| | - Muhammad Remanul Islam
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| | - Ahmad Naim A. Yahaya
- Institute of Postgraduate Studies, Universiti Kuala Lumpur Kuala Lumpur Wilayah Persekutuan Malaysia
| | - Sairul Izwan Safie
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| |
Collapse
|
26
|
Synthesis and electropolymerization of donor-acceptor-donor type monomers based on azobenzene-substituted thieno[3,4-c]pyrrole-4,6-dione acceptors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Anderson TE, Culver EW, Badía-Domínguez I, Wilcox WD, Buysse CE, Ruiz Delgado MC, Rasmussen SC. Probing the nature of donor-acceptor effects in conjugated materials: a joint experimental and computational study of model conjugated oligomers. Phys Chem Chem Phys 2021; 23:26534-26546. [PMID: 34807964 DOI: 10.1039/d1cp04603a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of model oligomers consisting of combinations of a traditional strong donor unit (3,4-ethylenedioxythiophene), a traditional strong acceptor unit (benzo[c][1,2,5]thiadiazole), and the ambipolar unit thieno[3,4-b]pyrazine were synthesized via cross-coupling methods. The prepared oligomers include all six possible dimeric combinations in order to characterize the extent and nature of donor-acceptor effects commonly used in the design of conjugated materials, with particular focus on understanding how the inclusion of ambipolar units influences donor-acceptor frameworks. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the nature and extent of donor-acceptor effects on both frontier orbital energies and the desired narrowing of the HOMO-LUMO energy gap. The corresponding relationships revealed should then provide a deeper understanding of donor-acceptor interactions and their application to conjugated materials.
Collapse
Affiliation(s)
- Trent E Anderson
- Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA.
| | - Evan W Culver
- Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA.
| | - Irene Badía-Domínguez
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain.
| | - Wyatt D Wilcox
- Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA.
| | - Claire E Buysse
- Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA.
| | - M Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain.
| | - Seth C Rasmussen
- Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA.
| |
Collapse
|
28
|
Seike M, Asaumi Y, Kawashima H, Hirai T, Nakamura Y, Fujii S. Morphological and chemical stabilities of polypyrrole in aqueous media for 1 year. Polym J 2021. [DOI: 10.1038/s41428-021-00572-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Foyle LDP, Hicks GEJ, Pollit AA, Seferos DS. Polyacetylene Revisited: A Computational Study of the Molecular Engineering of N-type Polyacetylene. J Phys Chem Lett 2021; 12:7745-7751. [PMID: 34369780 DOI: 10.1021/acs.jpclett.1c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of stable and highly conductive polymers, particularly n-type materials, remains an outstanding challenge in organic electronics. N-doped polyacetylene has long been studied as a highly conductive organic n-type material but suffers from extremely poor stability. Herein, we use DFT to model a series of n-doped polyacetylene derivatives, which have been functionalized with a range of electron-withdrawing substituents, with the goal of identifying attractive candidates for synthesis. We analyze the predicted molecular orbital energies, polymer planarity, and delocalization of charge carriers along the polymer backbone. In so doing, we develop key insights about the ideal substituents for both stable and highly conductive polyacetylene derivatives. This work will inform the modern synthesis and development of new polyacetylene derivatives. Beyond this, the work identifies a variety of new materials that have not yet been synthesized and should be good candidates for emerging optoelectronic applications including soft thermoelectrics, bioelectronics, and flexible device technologies.
Collapse
Affiliation(s)
- Liam D P Foyle
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Garion E J Hicks
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Adam A Pollit
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
30
|
Stejskal J, Trchová M, Kasparyan H, Kopecký D, Kolská Z, Prokeš J, Křivka I, Vajďák J, Humpolíček P. Pressure-Sensitive Conducting and Antibacterial Materials Obtained by in Situ Dispersion Coating of Macroporous Melamine Sponges with Polypyrrole. ACS OMEGA 2021; 6:20895-20901. [PMID: 34423197 PMCID: PMC8374914 DOI: 10.1021/acsomega.1c02330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 05/24/2023]
Abstract
Melamine sponges were coated with polypyrrole during the in situ polymerization of pyrrole. The precipitation polymerization was compared with the dispersion mode, that is, with the preparation in the presence of poly(N-vinylpyrrolidone) and nanosilica as colloidal stabilizers. The coating of sponges during the dispersion polymerization leads to the elimination of the undesired polypyrrole precipitate, improved conductivity, and increased specific surface area. The sponges were tested with respect to their conductivity and as pressure-sensitive conducting materials with antibacterial performance.
Collapse
Affiliation(s)
- Jaroslav Stejskal
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Miroslava Trchová
- University
of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Hayk Kasparyan
- University
of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Dušan Kopecký
- University
of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Zdeňka Kolská
- Faculty
of Science, J.E. Purkyně University, 400 96 Ústí
nad Labem, Czech Republic
| | - Jan Prokeš
- Faculty
of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic
| | - Ivo Křivka
- Faculty
of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic
| | - Jan Vajďák
- Centre
of Polymer Systems, Tomas Bata University
in Zlín, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre
of Polymer Systems, Tomas Bata University
in Zlín, 760 01 Zlín, Czech Republic
| |
Collapse
|
31
|
Bastide M, Frath D, Gam‐Derouich S, Lacroix J. Electrochemical and Plasmon‐induced Grafting of n‐Dopable π‐Conjugated Oligomers. ChemElectroChem 2021. [DOI: 10.1002/celc.202100563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mathieu Bastide
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J.-A. de Baïf 75205 Paris Cedex 13 France
| | - Denis Frath
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J.-A. de Baïf 75205 Paris Cedex 13 France
| | - Sarra Gam‐Derouich
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J.-A. de Baïf 75205 Paris Cedex 13 France
| | | |
Collapse
|
32
|
Lin CW, Xue S, Ji C, Huang SC, Tung V, Kaner RB. Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges. NANO LETTERS 2021; 21:3699-3707. [PMID: 33886345 DOI: 10.1021/acs.nanolett.1c00968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conjugated polyaniline can impact the field of water filtration membranes due to its hydrophilic and antibacterial nature, facile and inexpensive synthesis procedure, heat and acid tolerance, and unique doping/dedoping chemistry. However, the gelation effect, its rigid backbone, and the limited hydrophilicity of polyaniline severely restrict the adaptability to membranes and their antifouling performance. This Mini Review summarizes important works of polyaniline-related ultrafiltration membranes, highlighting solutions to conquer engineering obstacles in processing and challenges in enhancing surface hydrophilicity with an emphasis on chemistry. As a pH-responsive polymer convertible to a conductive salt, this classic material should continue to bring unconventional advances into the realm of water filtration membranes.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Physical Sciences and Engineering Division, Catalysis Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Shuangmei Xue
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chenhao Ji
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shu-Chuan Huang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan
| | - Vincent Tung
- Physical Sciences and Engineering Division, Catalysis Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
33
|
Pahlavanlu P, Cheng S, Battaglia AM, Hicks GEJ, Jarrett-Wilkins CN, Evariste S, Seferos DS. Templated approach to well-defined, oxidatively coupled conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d0py01620a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Templated oxidative polymerization affords organic soluble, oxidatively doped PEDOT-based polymers with controlled molecular weights and low dispersities (Đ ∼ 1.2) for the first time.
Collapse
Affiliation(s)
| | - Susan Cheng
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | | | | | | | | | |
Collapse
|
34
|
Mougkogiannis P, Turner M, Persaud K. Amine Detection Using Organic Field Effect Transistor Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 21:E13. [PMID: 33374982 PMCID: PMC7792628 DOI: 10.3390/s21010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Low power gas sensors with high sensitivity and selectivity are desired for many practical applications. Devices based on organic field effect transistors are promising because they can be fabricated at modest cost and are low power devices. Organic field effect transistors fabricated in bottom-gate bottom-contact configuration using the organic semiconductor [2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno] [3,2-b]thiophene) (DPP-T-TT) were systematically investigated to determine the response characteristics to a series of alkylamines and ammonia. The highest sensitivity was to dibutylamine with a limit of detection of 0.025 ppb, followed by n-butylamine, 0.056 ppb, and ammonia, 2.17 ppb. A model was constructed based on the Antoine equation that successfully allows the empirical prediction of the sensitivity and selectivity of the gas sensor to various analytes including amines and alcohols based on the Antoine C parameter and the heat of the vaporization of the analyte.
Collapse
Affiliation(s)
- Panagiotis Mougkogiannis
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK;
| | - Michael Turner
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK;
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
35
|
Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|