1
|
Abbas A, Fu Y, Qu Z, Zhao H, Sun Y, Lin Y, Xie J, Cheng J, Jiang D. Isolation and evaluation of the biocontrol potential of Talaromyces spp. against rice sheath blight guided by soil microbiome. Environ Microbiol 2021; 23:5946-5961. [PMID: 33989446 DOI: 10.1111/1462-2920.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Rice sheath blight caused by Rhizoctonia solani is the major disease of rice that seriously threatens food security worldwide. Efficient and eco-friendly biological approaches are urgently needed since no resistant cultivars are available. In this study, fallow and paddy soils were initially subjected to microbiome analyses, and the results showed that Talaromyces spp. were significantly more abundant in the paddy soil, while Trichoderma spp. were more abundant in the fallow soil, suggesting that Talaromyces spp. could live and survive better in the paddy soil. Five Talaromyces isolates, namely, TF-04, TF-03, TF-02, TF-01 and TA-02, were isolated from the paddy soil using sclerotia of R. solani as baits and were further evaluated for their activity against rice sheath blight. These isolates efficiently parasitized the hyphae and rotted the sclerotia even at higher water contents in the sterilized sand and the soil. Isolate TF-04 significantly promoted rice growth, reduced the severity of rice sheath blight and increased the rice yield under outdoor conditions. Defence-related genes were upregulated and enzyme activities were enhanced in rice treated with isolate TF-04. Our research supplies a microbiome-guided approach to screen biological control agents and provides Talaromyces isolates to biologically control rice sheath blight.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Zheng Qu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Huizhang Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yongjian Sun
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, People's Republic of China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| |
Collapse
|
2
|
Abstract
Among targeted proteomic techniques, AQUA-MRM is considered as one of the most reliable for accurate protein quantitation. This method displays high sensitivity, specificity, and reproducibility compared to many common biochemical techniques by coupling the use of unique, heavy-labeled peptide standards and triple-quadrupole mass spectrometry. However, there are several important steps that are required for successful development and validation of a robust AQUA-MRM assay. The following protocol outlines and details the key steps necessary for plant sample preparation as well as AQUA-MRM development and validation, specifically for absolute quantitation of plant proteins in vivo. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Brown University, Providence, Rhode Island.,Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - Rashaun S Wilson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri
| |
Collapse
|