1
|
Wang M, Li G, Zhou L, Hao Y, Wang L, Mao X, Zhang G, Zhao C. Design, synthesis and bioactivity of a new class of antifungal amino acid-directed phthalide compounds. PEST MANAGEMENT SCIENCE 2024; 80:3182-3193. [PMID: 38358013 DOI: 10.1002/ps.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Peanut southern blight disease, caused by Sclerotium rolfsii, is a destructive soil-borne fungal disease. The current control measures, which mainly employ succinate dehydrogenase inhibitors, are prone to resistance and toxicity to non-target organisms. As a result, it is necessary to explore the potential of eco-friendly fungicides for this disease. RESULTS Fourteen novel phthalide compounds incorporating amino acid moieties were designed and synthesized. The in vitro activity of analog A1 [half maximal effective concentration (EC50) = 332.21 mg L-1] was slightly lower than that of polyoxin (EC50 = 284.32 mg L-1). It was observed that on the seventh day, the curative activity of A1 at a concentration of 600.00 mg L-1 was 57.75%, while the curative activity of polyoxin at a concentration of 300.00 mg L-1 was 42.55%. These results suggested that our compound exhibited in vivo activity. Peanut plants treated with A1 showed significant agronomic improvements compared to the untreated control. Several compounds in this series exhibited superior root absorption and conduction in comparison to the endothermic fungicide thifluzamide. The growth promotion and absorption-conduction experiments demonstrated the reason for the superior in vivo activity of the target compound. Cytotoxic assays have demonstrated that this series of targeted compounds exhibit low toxicity levels toward human lo2 liver cells. CONCLUSION Our results provide a new strategy for the design and synthesis of novel green compounds. Furthermore, the target compound A1 can serve as a lead for further development of green fungicides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meizi Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guangyao Li
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Youwu Hao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Longfei Wang
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuewei Mao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, Zhengzhou, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou, China
| | - Chenxiang Zhao
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Akintayo DC, Manne SR, de la Torre BG, Li Y, Albericio F. A Practical Peptide Synthesis Workflow Using Amino-Li-Resin. Methods Protoc 2022; 5:mps5050072. [PMID: 36287044 PMCID: PMC9610658 DOI: 10.3390/mps5050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Herein we report a practical approach for peptide synthesis using second-generation fibrous polyacrylamide resin (Li-resin, “Li” is coming from the name of its inventor, Yongfu Li). This resin with the corresponding handle was used for solid phase peptide synthesis (SPPS) using a fluorenylmethoxycarbonyl (Fmoc) approach. We reveal that the most appropriate mixing and filtration strategy when using amino-Li-resin in SPPS is via shaking and gravity filtration, instead of mechanical stirring and suction filtration used with other resins. The strategy was demonstrated with the SPPS of H-Tyr-Ile-Ile-Phe-Leu-NH2, which contains the difficult sequence Ile-Ile. The peptide was obtained with excellent purity and yield. We are confident that this strategy will be rapidly implemented by other peptide laboratories.
Collapse
Affiliation(s)
- Damilola Caleb Akintayo
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Srinivasa Rao Manne
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.)
| | - Yongfu Li
- Biotide Core, LLC, 33815 SE Eastgate Circle, Corvallis, OR 97333, USA
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.)
| |
Collapse
|
3
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
C-terminal modified Enkephalin-like tetrapeptides with enhanced affinities at the kappa opioid receptor and monoamine transporters. Bioorg Med Chem 2021; 51:116509. [PMID: 34798381 DOI: 10.1016/j.bmc.2021.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022]
Abstract
A new series of enkephalin-like tetrapeptide analogs modified at the C-terminus by an N-(3,4-dichlorophenyl)-N-(piperidin-4-yl)propionamide (DPP) moiety were designed, synthesized, and tested for their binding affinities at opioid receptors and monoamine transporters to evaluate their potential multifunctional activity for the treatment of chronic pain. Most ligands exhibited high binding affinities in the nanomolar range at the opioid receptors with a slight delta-opioid receptor (DOR) selectivity over mu-opioid receptor (MOR) and kappa-opioid receptor (KOR) and low binding affinities in the micromolar range at the monoamine transporters, SERT and NET. Ligands of which the positions 1 and 4 were substituted by Dmt and Phe(4-X) residues, respectively, showed the excellent binding affinities at three opioid receptors. Among them, Dmt-d-Tic-Gly-Phe(4-F)-DPP was the most promising considering its excellent opioid affinities, particularly unexpected high binding affinity (Ki = 0.13 nM) at the KOR, and moderate interactions with serotonin/norepinephrine reuptake inhibitors (SNRIs). Docking studies revealed that the ligand was a good fit for the KOR binding pocket (binding score = 8,750).
Collapse
|
5
|
Lee YS, Remesic M, Ramos-Colon C, Wu Z, LaVigne J, Molnar G, Tymecka D, Misicka A, Streicher JM, Hruby VJ, Porreca F. Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism. Biomedicines 2021; 9:biomedicines9060625. [PMID: 34072734 PMCID: PMC8229567 DOI: 10.3390/biomedicines9060625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, we developed a series of mixed MOR/DOR agonists that are enkephalin-like tetrapeptide analogs with an N-phenyl-N-piperidin-4-ylpropionamide (Ppp) moiety at the C-terminus. Further SAR study on the analogs, initiated by the findings from off-target screening, resulted in the discovery of LYS744 (6, Dmt-DNle-Gly-Phe(p-Cl)-Ppp), a multifunctional ligand with MOR/DOR agonist and KOR antagonist activity (GTPγS assay: IC50 = 52 nM, Imax = 122% cf. IC50 = 59 nM, Imax = 100% for naloxone) with nanomolar range of binding affinity (Ki = 1.3 nM cf. Ki = 2.4 nM for salvinorin A). Based on its unique biological profile, 6 is considered to possess high therapeutic potential for the treatment of chronic pain by modulating pathological KOR activation while retaining analgesic efficacy attributed to its MOR/DOR agonist activity.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
- Correspondence: ; Tel.: +1-520-626-2820
| | - Michael Remesic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Cyf Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Zhijun Wu
- ABC Resource, Plainsboro, NJ 08536, USA;
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Gabriella Molnar
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - John M. Streicher
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| |
Collapse
|