1
|
Maluleke T, Benecke R, Oladejo S, Feulner G, Kern S, Lister J, McClelland G, Njoki M, Noack P, Petruccione F, Rajaratnam K, Waitt C, Rosenkranz B, Pillai G. Cross-disciplinary mathematical modelling to benefit healthcare - could clinical pharmacology play an enabling role? Br J Clin Pharmacol 2024; 90:2509-2516. [PMID: 39082394 DOI: 10.1111/bcp.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/28/2024] Open
Abstract
Clinical pharmacology is often the nexus in any cross-disciplinary team that is seeking solutions for human healthcare issues. The use and application of real-world data and artificial intelligence to better understand our ecosystem has influenced our view at the world and how we do things. This has resulted in remarkable advancements in the healthcare space and development of personalized medicines with great attributes from the application of models and simulations, contributing to a more efficient healthcare development process. A cross-disciplinary symposium was held in December 2023, whereby experts from different scientific disciplines engaged in a high-level discussion on the opportunities and challenges of mathematical models in different fields, possible future developments and decision making. A strong interlink amongst the disciplines represented was apparent, with clinical pharmacology identified as the one which integrates various scientific disciplines. Deliberate and strategic cross-disciplinary dialogues are required to break out of the silos and implement integration for efficiency and cost-effectiveness of novel interventions.
Collapse
Affiliation(s)
- Tirhani Maluleke
- F. Hoffmann La-Roche, Johannesburg, South Africa
- Fundisa African Academy of Medicines Development, Cape Town, South Africa
| | - Rohan Benecke
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sunday Oladejo
- School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Georg Feulner
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | - Steve Kern
- Global Health Labs, Bellevue, Bellevue, Washington, USA
| | | | | | - Miriam Njoki
- Science For Africa (SFA) Foundation, Nairobi, Kenya
| | - Patrick Noack
- University of Applied Sciences, Weihenstephan-Triesdorf, Germany
| | - Francesco Petruccione
- School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Kanshukan Rajaratnam
- School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bernd Rosenkranz
- Fundisa African Academy of Medicines Development, Cape Town, South Africa
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Institute for Clinical Pharmacology and Toxicology, Charité Universitätsmedizin, Berlin, Germany
| | - Goonaseela Pillai
- CP+ Associates GmbH, Basel, Switzerland
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
- Pharmacometrics Africa NPC, Cape Town, South Africa
| |
Collapse
|
2
|
Stambach N, Lambert H, Eves K, Nfornuh BA, Bowler E, Williams P, Lama M, Bakamba P, Allan R. Global acute malnutrition is associated with geography, season and malaria incidence in the conflict-affected regions of Ouham and Ouham Pendé prefectures, Central African Republic. BMC Med 2024; 22:380. [PMID: 39256854 PMCID: PMC11389304 DOI: 10.1186/s12916-024-03603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Ongoing conflict between multiple armed groups, including pastoralist herders in the Central African Republic (CAR) causes frequent population displacements, food insecurity and scarcity of healthcare services. The inaccessibility and insecurity of many areas of CAR limit data collection and assessments from national nutritional surveys. Community health workers (CHWs) trained by an international non-governmental organisation, The MENTOR Initiative, deliver basic healthcare to children under 5 years old living in hard-to-reach and conflict-affected areas in eight subprefectures of north-west CAR. Their nutritional status and its associations with geography, malaria, season and conflict are unknown. METHODS CHW monthly records (October 2015-August 2021), Armed Conflict Location and Event Data project conflict data and The World Bank Group meteorological data for eight subprefectures of north-west CAR were analysed. Associations between counts of global acute malnutrition (GAM) assessed by mid-upper arm circumference and malaria, season and conflict were investigated using negative binomial regression. RESULTS Of the 457,325 consultations with children aged 6-59 months, 6.2% and 0.4% were classified as moderately or severely malnourished, respectively. The negative binomial model demonstrated differences in counts of GAM by subprefecture. Counts of GAM were positively associated with the case rate of severe malaria (IRR = 1.045; 95% CI: 1.04-1.06) and the rainy season (July-September) (IRR = 1.10; 95% CI: 1.03-1.17). Conflict events coded as Battles in ACLED were associated with lower counts of GAM (IRR = 0.78; 95% CI: 0.62-0.97). CONCLUSIONS This analysis shows geographical differences in levels of malnutrition in north-west CAR and demonstrates clear associations between malnutrition, season and malaria. It provides evidence that levels of GAM may be underestimated in north-west CAR in areas experiencing conflict. These findings highlight the need for targeted nutritional support to reach children most at risk of malnutrition. CHWs are a proven effective means of delivering essential primary healthcare services in hard-to-reach, conflict-affected areas.
Collapse
Affiliation(s)
| | - Helen Lambert
- Nutritional Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Katie Eves
- The MENTOR Initiative, Haywards Heath, RH16 1PG, UK
| | | | - Emily Bowler
- The MENTOR Initiative, Bangui, Central African Republic
| | - Peter Williams
- School of Mathematics, Physics and Space, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Marcel Lama
- National Malaria Programme, Ministry of Health and Population, Bangui, Central African Republic
| | - Pascal Bakamba
- National Malaria Programme, Ministry of Health and Population, Bangui, Central African Republic
| | - Richard Allan
- The MENTOR Initiative, Haywards Heath, RH16 1PG, UK.
| |
Collapse
|
3
|
Stepniewska K, Allan R, Anvikar AR, Anyorigiya TA, Ashley EA, Bassat Q, Baudin E, Bjorkman A, Bonnet M, Boulton C, Bousema T, Carn G, Carrara VI, D'Alessandro U, Davis TME, Denoeud-Ndam L, Desai M, Djimde AA, Dorsey G, Etard JF, Falade C, Fanello C, Gaye O, Gonzalez R, Grandesso F, Grivoyannis AD, Grais RF, Humphreys GS, Ishengoma DS, Karema C, Kayentao K, Kennon K, Kremsner P, Laman M, Laminou IM, Macete E, Martensson A, Mayxay M, Menan HIB, Menéndez C, Moore BR, Nabasumba C, Ndiaye JL, Nhama A, Nosten F, Onyamboko M, Phyo AP, Ramharter M, Rosenthal PJ, Schramm B, Sharma YD, Sirima SB, Strub-Wourgaft N, Sylla K, Talisuna AO, Temu EA, Thwing JI, Tinto H, Valentini G, White NJ, Yeka A, Isanaka S, Barnes KI, Guerin PJ. Does acute malnutrition in young children increase the risk of treatment failure following artemisinin-based combination therapy? A WWARN individual patient data meta-analysis. Lancet Glob Health 2024; 12:e631-e640. [PMID: 38485430 PMCID: PMC10951956 DOI: 10.1016/s2214-109x(24)00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The geographical, demographic, and socioeconomic distributions of malaria and malnutrition largely overlap. It remains unknown whether malnutrition affects the efficacy of WHO-recommended artemisinin-based combination therapies (ACTs). A previous systematic review was inconclusive as data were sparse and heterogeneous, indicating that other methodological approaches, such as individual patient data meta-analysis, should be considered. The objective of this study was to conduct such a meta-analysis to assess the effect of malnutrition (wasting and stunting) on treatment outcomes in children younger than 5 years treated with an ACT for uncomplicated falciparum malaria. METHODS We conducted a meta-analysis of individual patient data from studies identified through a systematic review of literature published between 1980 and 2018 in PubMed, Global Health, and Cochrane Libraries (PROSPERO CRD42017056934) and inspection of the WorldWide Antimalarial Resistance Network (WWARN) repository for ACT efficacy studies, including children younger than 5 years with uncomplicated falciparum malaria. The association of either acute (wasting) or chronic (stunting) malnutrition with day 42 PCR-adjusted risk of recrudescence (ie, return of the same infection) or reinfection after therapy was investigated using Cox regression, and with day 2 parasite positivity using logistic regression. FINDINGS Data were included from all 36 studies targeted, 31 from Africa. Of 11 301 eligible children in 75 study sites, 11·5% were wasted (weight-for-height Z score [WHZ] <-2), and 31·8% were stunted (height-for-age Z score [HAZ] <-2). Decrease in WHZ was associated with increased risk of day 2 positivity (adjusted odds ratio 1·12, 95% CI 1·05-1·18 per unit; p=0·0002), treatment failure (adjusted hazard ratio [AHR] 1·14, 95% CI 1·02-1·26, p=0·016), and reinfection after therapy (AHR 1·09, 1·04-1·13, p=0·0003). Children with milder wasting (WHZ -2 to -1) also had a higher risk of recrudescence (AHR 1·85, 1·29-2·65, p=0·0008 vs WHZ ≥0). Stunting was not associated with reduced ACT efficacy. INTERPRETATION Children younger than 5 years with acute malnutrition and presenting with uncomplicated falciparum malaria were at higher risk of delayed parasite clearance, ACT treatment failure, and reinfections. Stunting was more prevalent, but not associated with changes in ACT efficacy. Acute malnutrition is known to impact medicine absorption and metabolism. Further study to inform dose optimisation of ACTs in wasted children is urgently needed. FUNDING Bill & Melinda Gates Foundation. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
|
4
|
Takyi A, Carrara VI, Dahal P, Przybylska M, Harriss E, Insaidoo G, Barnes KI, Guerin PJ, Stepniewska K. Characterisation of populations at risk of sub-optimal dosing of artemisinin-based combination therapy in Africa. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002059. [PMID: 38039291 PMCID: PMC10691722 DOI: 10.1371/journal.pgph.0002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023]
Abstract
Selection of resistant malaria strains occurs when parasites are exposed to inadequate antimalarial drug concentrations. The proportion of uncomplicated falciparum malaria patients at risk of being sub-optimally dosed with the current World Health Organization (WHO) recommended artemisinin-based combination therapies (ACTs) is unknown. This study aims to estimate this proportion and the excess number of treatment failures (recrudescences) associated with sub-optimal dosing in Sub-Saharan Africa. Sub-populations at risk of sub-optimal dosing include wasted children <5 years of age, patients with hyperparasitaemia, pregnant women, people living with HIV, and overweight adults. Country-level data on population structure were extracted from openly accessible data sources. Pooled adjusted Hazard Ratios for PCR-confirmed recrudescence were estimated for each risk group from published meta-analyses using fixed-effect meta-analysis. In 2020, of the estimated 153.1 million uncomplicated P. falciparum malaria patients in Africa, the largest risk groups were the hyperparasitaemic patients (13.2 million, 8.6% of uncomplicated malaria cases) and overweight adults (10.3 million, 6.7% of uncomplicated cases). The estimated excess total number of treatment failures ranged from 0.338 million for a 98% baseline ACT efficacy to 1.352 million for a 92% baseline ACT efficacy. Our study shows that an estimated nearly 1 in 4 people with uncomplicated confirmed P. falciparum malaria in Africa are at risk of receiving a sub-optimal antimalarial drug dosing. This increases the risk of antimalarial drug resistance and poses a serious threat to malaria control and elimination efforts. Changes in antimalarial dosing or treatment duration of current antimalarials may be needed and new antimalarials development should ensure sufficient drug concentration levels in these sub-populations that carry a high malaria burden.
Collapse
Affiliation(s)
- Abena Takyi
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
- Department of Child Health, Korle Bu Teaching Hospital, Accra, Ghana
| | - Verena I. Carrara
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Prabin Dahal
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
| | | | - Eli Harriss
- The Knowledge Centre, Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | | | - Karen I. Barnes
- Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe J. Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
| | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom
| |
Collapse
|
5
|
Roh ME, Zongo I, Haro A, Huang L, Somé AF, Yerbanga RS, Conrad MD, Wallender E, Legac J, Aweeka F, Ouédraogo JB, Rosenthal PJ. Seasonal Malaria Chemoprevention Drug Levels and Drug Resistance Markers in Children With or Without Malaria in Burkina Faso: A Case-Control Study. J Infect Dis 2023; 228:926-935. [PMID: 37221018 PMCID: PMC10547452 DOI: 10.1093/infdis/jiad172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Despite scale-up of seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) in children 3-59 months of age in Burkina Faso, malaria incidence remains high, raising concerns regarding SMC effectiveness and selection of drug resistance. Using a case-control design, we determined associations between SMC drug levels, drug resistance markers, and presentation with malaria. METHODS We enrolled 310 children presenting at health facilities in Bobo-Dioulasso. Cases were SMC-eligible children 6-59 months of age diagnosed with malaria. Two controls were enrolled per case: SMC-eligible children without malaria; and older (5-10 years old), SMC-ineligible children with malaria. We measured SP-AQ drug levels among SMC-eligible children and SP-AQ resistance markers among parasitemic children. Conditional logistic regression was used to compute odds ratios (ORs) comparing drug levels between cases and controls. RESULTS Compared to SMC-eligible controls, children with malaria were less likely to have any detectable SP or AQ (OR, 0.33 [95% confidence interval, .16-.67]; P = .002) and have lower drug levels (P < .05). Prevalences of mutations mediating high-level SP resistance were rare (0%-1%) and similar between cases and SMC-ineligible controls (P > .05). CONCLUSIONS Incident malaria among SMC-eligible children was likely due to suboptimal levels of SP-AQ, resulting from missed cycles rather than increased antimalarial resistance to SP-AQ.
Collapse
Affiliation(s)
- Michelle E Roh
- Institute for Global Health Sciences, Malaria Elimination Initiative, University of California, San Francisco
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Alassane Haro
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California, San Francisco
| | | | | | | | - Erika Wallender
- Department of Clinical Pharmacy, University of California, San Francisco
| | - Jennifer Legac
- Department of Medicine, University of California, San Francisco
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California, San Francisco
| | - Jean-Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | | |
Collapse
|
6
|
Mhango EKG, Snorradottir BS, Kachingwe BHK, Katundu KGH, Gizurarson S. Estimation of Pediatric Dosage of Antimalarial Drugs, Using Pharmacokinetic and Physiological Approach. Pharmaceutics 2023; 15:1076. [PMID: 37111562 PMCID: PMC10140824 DOI: 10.3390/pharmaceutics15041076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Most of the individuals who die of malaria in sub-Saharan Africa are children. It is, therefore, important for this age group to have access to the right treatment and correct dose. Artemether-lumefantrine is one of the fixed dose combination therapies that was approved by the World Health Organization to treat malaria. However, the current recommended dose has been reported to cause underexposure or overexposure in some children. The aim of this article was, therefore, to estimate the doses that can mimic adult exposure. The availability of more and reliable pharmacokinetic data is essential to accurately estimate appropriate dosage regimens. The doses in this study were estimated using the physiological information from children and some pharmacokinetic data from adults due to the lack of pediatric pharmacokinetic data in the literature. Depending on the approach that was used to calculate the dose, the results showed that some children were underexposed, and others were overexposed. This can lead to treatment failure, toxicity, and even death. Therefore, when designing a dosage regimen, it is important to know and include the distinctions in physiology at various phases of development that influence the pharmacokinetics of various drugs in order to estimate the dose in young children. The physiology at each time point during the growth of a child may influence how the drug is absorbed, gets distributed, metabolized, and eliminated. From the results, there is a very clear need to conduct a clinical study to further verify if the suggested (i.e., 0.34 mg/kg for artemether and 6 mg/kg for lumefantrine) doses could be clinically efficacious.
Collapse
Affiliation(s)
- Ellen K. G. Mhango
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, 107 Reykjavik, Iceland (B.S.S.)
- Department of Pharmacy, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| | - Bergthora S. Snorradottir
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, 107 Reykjavik, Iceland (B.S.S.)
| | - Baxter H. K. Kachingwe
- Department of Pharmacy, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| | - Kondwani G. H. Katundu
- Biomedical Sciences Department, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| | - Sveinbjorn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, 107 Reykjavik, Iceland (B.S.S.)
- Department of Pharmacy, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| |
Collapse
|
7
|
Ali AM, Wallender E, Hughes E, Dorsey G, Savic RM. Interplay among malnutrition, chemoprevention, and the risk of malaria in young Ugandan children: Longitudinal pharmacodynamic and growth analysis. CPT Pharmacometrics Syst Pharmacol 2023; 12:656-667. [PMID: 36919202 DOI: 10.1002/psp4.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/30/2022] [Accepted: 10/06/2022] [Indexed: 03/16/2023] Open
Abstract
African children are at risk of malaria and malnutrition. We quantified relationships between malaria and malnutrition among young Ugandan children in a high malaria transmission region. Data were used from a randomized controlled trial where Ugandan HIV-unexposed (n = 393) and HIV-exposed (n = 186) children were randomized to receive no malaria chemoprevention, monthly sulfadoxine-pyrimethamine, daily trimethoprim-sulfamethoxazole, or monthly dihydroartemisinin-piperaquine (DP) from age 6-24 months, and then were followed off chemoprevention until age 36 months. Monthly height and weight, and time of incident malaria episodes were obtained; 89 children who received DP contributed piperaquine (PQ) concentrations. Malaria hazard was modeled using parametric survival analysis adjusted for repeated events, and height and weight were modeled using a Brody growth model. Among 579 children, stunting (height-for-age z-score [ZHA] < -2) was associated with a 17% increased malaria hazard (95% confidence interval [CI] 10-23%) compared with children with a ZHA of zero. DP was associated with a 35% lower malaria hazard (hazard ratio [HR] [95% CI], 0.65 [0.41-0.97]), compared to no chemoprevention. After accounting for PQ levels, stunted children who received DP had 2.1 times the hazard of malaria (HR [95% CI] 2.1 [1.6-3.0]) compared with children with a ZHA of zero who received DP. Each additional malaria episode was associated with a 0.4% reduced growth rate for height. Better dosing regimens are needed to optimize malaria prevention in malnourished populations, but, importantly, malaria chemoprevention may reduce the burden of malnutrition in early childhood.
Collapse
Affiliation(s)
- Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Kay K, Goodwin J, Ehrlich H, Ou J, Freeman T, Wang K, Li F, Wade M, French J, Huang L, Aweeka F, Mwebaza N, Kajubi R, Riggs M, Ruiz-Garcia A, Parikh S. Impact of Drug Exposure on Resistance Selection Following Artemether-Lumefantrine Treatment for Malaria in Children With and Without HIV in Uganda. Clin Pharmacol Ther 2023; 113:660-669. [PMID: 36260349 PMCID: PMC9981240 DOI: 10.1002/cpt.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Katherine Kay
- Metrum Research Group, Tariffville, Connecticut, USA
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Hanna Ehrlich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Joyce Ou
- Yale University, New Haven, Connecticut, USA
| | | | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Liusheng Huang
- University of California, San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- University of California, San Francisco, San Francisco, California, USA
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Matthew Riggs
- Metrum Research Group, Tariffville, Connecticut, USA
| | | | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Chotsiri P, White NJ, Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention. Trends Parasitol 2022; 38:673-682. [DOI: 10.1016/j.pt.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
10
|
Sugiarto SR, Page-Sharp M, Drinkwater JJ, Davis WA, Salman S, Davis TME. Pharmacokinetic properties of the antimalarial combination therapy artemether-lumefantrine in normal-weight, overweight and obese healthy male adults. Int J Antimicrob Agents 2021; 59:106482. [PMID: 34818520 DOI: 10.1016/j.ijantimicag.2021.106482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
The component drugs in the widely used antimalarial artemisinin combination therapy artemether-lumefantrine are lipophilic, with the possibility that recommended fixed doses in adults may lead to subtherapeutic concentrations and consequent treatment failure in overweight/obese individuals with malaria. The aim of this study was to investigate the pharmacokinetic properties of artemether, lumefantrine and their active metabolites dihydroartemisinin and desbutyl-lumefantrine in 16 normal-weight, overweight and obese healthy male volunteers [body mass index (BMI) categories ≤25 kg/m², >25-≤30 kg/m² and >30 kg/m², respectively; absolute range 19.3-37.2 kg/m²]. Participants received the conventional six doses of artemether-lumefantrine over 3 days, each dose comprising 80 mg artemether plus 480 mg lumefantrine administered with 6.7 g fat, and blood samples were collected at pre-specified time-points over 14 days. Plasma drug/metabolite concentrations were measured using liquid chromatography-mass spectrometry and included in multi-compartmental population pharmacokinetic models. There was a non-significant trend to a lower area under the plasma concentration-time curve with a higher body weight or BMI for dihydroartemisinin and especially artemether which was attenuated when normalized for mg/kg dose, but this relationship was not evident in the case of the more lipophilic lumefantrine and its metabolite desbutyl-lumefantrine. Simulated Day 7 plasma lumefantrine concentrations were >200 µg/L (the threshold at which Plasmodium falciparum recrudescences are minimized) in all participants. These results indicate that there is no need for artemether-lumefantrine dose modification in overweight and obese patients with malaria.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Madhu Page-Sharp
- Curtin University, School of Pharmacy and Biomedical Sciences, Bentley, Western Australia, Australia
| | - Jocelyn J Drinkwater
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Sam Salman
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia; Clinical Pharmacology and Toxicology Unit, PathWest, Western Australia, Australia
| | - Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia.
| |
Collapse
|
11
|
Wallender E, Ali AM, Hughes E, Kakuru A, Jagannathan P, Muhindo MK, Opira B, Whalen M, Huang L, Duvalsaint M, Legac J, Kamya MR, Dorsey G, Aweeka F, Rosenthal PJ, Savic RM. Identifying an optimal dihydroartemisinin-piperaquine dosing regimen for malaria prevention in young Ugandan children. Nat Commun 2021; 12:6714. [PMID: 34795281 PMCID: PMC8602248 DOI: 10.1038/s41467-021-27051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Intermittent preventive treatment (IPT) with dihydroartemisinin-piperaquine (DP) is highly protective against malaria in children, but is not standard in malaria-endemic countries. Optimal DP dosing regimens will maximize efficacy and reduce toxicity and resistance selection. We analyze piperaquine (PPQ) concentrations (n = 4573), malaria incidence data (n = 326), and P. falciparum drug resistance markers from a trial of children randomized to IPT with DP every 12 weeks (n = 184) or every 4 weeks (n = 96) from 2 to 24 months of age (NCT02163447). We use nonlinear mixed effects modeling to establish malaria protective PPQ levels and risk factors for suboptimal protection. Compared to DP every 12 weeks, DP every 4 weeks is associated with 95% protective efficacy (95% CI: 84-99%). A PPQ level of 15.4 ng/mL reduces the malaria hazard by 95%. Malnutrition reduces PPQ exposure. In simulations, we show that DP every 4 weeks is optimal across a range of transmission intensities, and age-based dosing improves malaria protection in young or malnourished children.
Collapse
Affiliation(s)
- Erika Wallender
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Ali Mohamed Ali
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| | - Emma Hughes
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| | - Abel Kakuru
- grid.463352.5Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- grid.168010.e0000000419368956Department of Medicine, Stanford University, Palo Alto, CA USA
| | | | - Bishop Opira
- grid.463352.5Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Meghan Whalen
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Liusheng Huang
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Marvin Duvalsaint
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Jenny Legac
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Moses R. Kamya
- grid.463352.5Infectious Diseases Research Collaboration, Kampala, Uganda ,grid.11194.3c0000 0004 0620 0548Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Francesca Aweeka
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Philip J. Rosenthal
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Rada M. Savic
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| |
Collapse
|
12
|
Taylor WR, Hoglund RM, Peerawaranun P, Nguyen TN, Hien TT, Tarantola A, von Seidlein L, Tripura R, Peto TJ, Dondorp AM, Landier J, H Nosten F, Smithuis F, Phommasone K, Mayxay M, Kheang ST, Say C, Neeraj K, Rithea L, Dysoley L, Kheng S, Muth S, Roca-Feltrer A, Debackere M, Fairhurst RM, Song N, Buchy P, Menard D, White NJ, Tarning J, Mukaka M. Development of weight and age-based dosing of daily primaquine for radical cure of vivax malaria. Malar J 2021; 20:366. [PMID: 34503519 PMCID: PMC8427859 DOI: 10.1186/s12936-021-03886-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In many endemic areas, Plasmodium vivax malaria is predominantly a disease of young adults and children. International recommendations for radical cure recommend fixed target doses of 0.25 or 0.5 mg/kg/day of primaquine for 14 days in glucose-6-phosphate dehydrogenase normal patients of all ages. However, for many anti-malarial drugs, including primaquine, there is evidence that children have lower exposures than adults for the same weight-adjusted dose. The aim of the study was to develop 14-day weight-based and age-based primaquine regimens against high-frequency relapsing tropical P. vivax. METHODS The recommended adult target dose of 0.5 mg/kg/day (30 mg in a 60 kg patient) is highly efficacious against tropical P. vivax and was assumed to produce optimal drug exposure. Primaquine doses were calculated using allometric scaling to derive a weight-based primaquine regimen over a weight range from 5 to 100 kg. Growth curves were constructed from an anthropometric database of 53,467 individuals from the Greater Mekong Subregion (GMS) to define weight-for-age relationships. The median age associated with each weight was used to derive an age-based dosing regimen from the weight-based regimen. RESULTS The proposed weight-based regimen has 5 dosing bands: (i) 5-7 kg, 5 mg, resulting in 0.71-1.0 mg/kg/day; (ii) 8-16 kg, 7.5 mg, 0.47-0.94 mg/kg/day; (iii) 17-40 kg, 15 mg, 0.38-0.88 mg/kg/day; (iv) 41-80 kg, 30 mg, 0.37-0.73 mg/kg/day; and (v) 81-100 kg, 45 mg, 0.45-0.56 mg/kg/day. The corresponding age-based regimen had 4 dosing bands: 6-11 months, 5 mg, 0.43-1.0 mg/kg/day; (ii) 1-5 years, 7.5 mg, 0.35-1.25 mg/kg/day; (iii) 6-14 years, 15 mg, 0.30-1.36 mg/kg/day; and (iv) ≥ 15 years, 30 mg, 0.35-1.07 mg/kg/day. CONCLUSION The proposed weight-based regimen showed less variability around the primaquine dose within each dosing band compared to the age-based regimen and is preferred. Increased dose accuracy could be achieved by additional dosing bands for both regimens. The age-based regimen might not be applicable to regions outside the GMS, which must be based on local anthropometric data. Pharmacokinetic data in small children are needed urgently to inform the proposed regimens.
Collapse
Affiliation(s)
- Walter Robert Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
| | - Thuy Nhien Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Wellcome Trust Major Oversea Programme, Ho Chi Minh City, Vietnam
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, Phnom Penh, 12201, Cambodia
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Global Health, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Aix-Marseille Université, IRD, INSERM, SESSTIM, Marseille, France
| | - Francois H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | | | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Amsterdam Institute for Global Health & Development, Amsterdam, The Netherlands
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
| | - Soy Ty Kheang
- Center for Health and Social Development (HSD), National Institute for Public Health (NIPH) and University Research Co., LLC (URC), Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
- AQUITY Global Inc, 987 Avenel Farm Dr, Potomac, MD, 20854, USA
| | - Chy Say
- Center for Health and Social Development (HSD), National Institute for Public Health (NIPH) and University Research Co., LLC (URC), Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Kak Neeraj
- University Research Co., LLC Washington DC, 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Leang Rithea
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
- Institute of Public Health, Phnom Penh, Cambodia
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Khan Sen Sok, Phnom Penh, Cambodia
| | | | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, Khan Chamkarmon, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ngak Song
- FHI 360 Cambodia Office, Keng Kang III Khan Chamkamon, Phnom Penh, Cambodia
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, Phnom Penh, 12201, Cambodia
- GSK Vaccines, 23 Rochester Park, Singapore, Singapore
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, Phnom Penh, 12201, Cambodia
- Unité Génétique du Paludisme Et Résistance, Département Parasites Et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Kapulu MC, Njuguna P, Hamaluba M, Kimani D, Ngoi JM, Musembi J, Ngoto O, Otieno E, Billingsley PF. Safety and PCR monitoring in 161 semi-immune Kenyan adults following controlled human malaria infection. JCI Insight 2021; 6:e146443. [PMID: 34264864 PMCID: PMC8492329 DOI: 10.1172/jci.insight.146443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUNDNaturally acquired immunity to malaria is incompletely understood. We used controlled human malaria infection (CHMI) to study the impact of past exposure on malaria in Kenyan adults in relation to infection with a non-Kenyan parasite strain.METHODSWe administered 3.2 × 103 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Challenge, NF54 West African strain) by direct venous inoculation and undertook clinical monitoring and serial quantitative PCR (qPCR) of the 18S ribosomal RNA gene. The study endpoint was met when parasitemia reached 500 or more parasites per μL blood, clinically important symptoms were seen, or at 21 days after inoculation. All volunteers received antimalarial drug treatment upon meeting the endpoint.RESULTSOne hundred and sixty-one volunteers underwent CHMI between August 4, 2016, and February 14, 2018. CHMI was well tolerated, with no severe or serious adverse events. Nineteen volunteers (11.8%) were excluded from the analysis based on detection of antimalarial drugs above the minimal inhibitory concentration or parasites genotyped as non-NF54. Of the 142 volunteers who were eligible for analysis, 26 (18.3%) had febrile symptoms and were treated; 30 (21.1%) reached 500 or more parasites per μL and were treated; 53 (37.3%) had parasitemia without meeting thresholds for treatment; and 33 (23.2%) remained qPCR negative.CONCLUSIONWe found that past exposure to malaria, as evidenced by location of residence, in some Kenyan adults can completely suppress in vivo growth of a parasite strain originating from outside Kenya.TRIAL REGISTRATIONClinicalTrials.gov NCT02739763.FUNDINGWellcome Trust.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Njuguna
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Domtila Kimani
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M. Ngoi
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Janet Musembi
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Omar Ngoto
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | |
Collapse
|
14
|
Influence of Malnutrition on the Pharmacokinetics of Drugs Used in the Treatment of Poverty-Related Diseases: A Systematic Review. Clin Pharmacokinet 2021; 60:1149-1169. [PMID: 34060020 PMCID: PMC8545752 DOI: 10.1007/s40262-021-01031-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
Background Patients affected by poverty-related infectious diseases (PRDs) are disproportionally affected by malnutrition. To optimize treatment of patients affected by PRDs, we aimed to assess the influence of malnutrition associated with PRDs on drug pharmacokinetics, by way of a systematic review. Methods A systematic review was performed on the effects of malnourishment on the pharmacokinetics of drugs to treat PRDs, including HIV, tuberculosis, malaria, and neglected tropical diseases. Results In 21/29 PRD drugs included in this review, pharmacokinetics were affected by malnutrition. Effects were heterogeneous, but trends were observed for specific classes of drugs and different types and degrees of malnutrition. Bioavailability of lumefantrine, sulfadoxine, pyrimethamine, lopinavir, and efavirenz was decreased in severely malnourished patients, but increased for the P-glycoprotein substrates abacavir, saquinavir, nevirapine, and ivermectin. Distribution volume was decreased for the lipophilic drugs isoniazid, chloroquine, and nevirapine, and the α1-acid glycoprotein-bound drugs quinine, rifabutin, and saquinavir. Distribution volume was increased for the hydrophilic drug streptomycin and the albumin-bound drugs rifampicin, lopinavir, and efavirenz. Drug elimination was decreased for isoniazid, chloroquine, quinine, zidovudine, saquinavir, and streptomycin, but increased for the albumin-bound drugs quinine, chloroquine, rifampicin, lopinavir, efavirenz, and ethambutol. Clinically relevant effects were mainly observed in severely malnourished and kwashiorkor patients. Conclusions Malnutrition-related effects on pharmacokinetics potentially affect treatment response, particularly for severe malnutrition or kwashiorkor. However, pharmacokinetic knowledge is lacking for specific populations, especially patients with neglected tropical diseases and severe malnutrition. To optimize treatment in these neglected subpopulations, adequate pharmacokinetic studies are needed, including severely malnourished or kwashiorkor patients. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01031-z.
Collapse
|
15
|
Gastine S, Hsia Y, Clements M, Barker CI, Bielicki J, Hartmann C, Sharland M, Standing JF. Variation in Target Attainment of Beta-Lactam Antibiotic Dosing Between International Pediatric Formularies. Clin Pharmacol Ther 2021; 109:958-970. [PMID: 33521971 PMCID: PMC8358626 DOI: 10.1002/cpt.2180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
As antimicrobial susceptibility of common bacterial pathogens decreases, ensuring optimal dosing may preserve the use of older antibiotics in order to limit the spread of resistance to newer agents. Beta-lactams represent the most widely prescribed antibiotic class, yet most were licensed prior to legislation changes mandating their study in children. As a result, significant heterogeneity persists in the pediatric doses used globally, along with quality of evidence used to inform dosing. This review summarizes dosing recommendations from the major pediatric reference sources and tries to answer the questions: Does beta-lactam dose heterogeneity matter? Does it impact pharmacodynamic target attainment? For three important severe clinical infections-pneumonia, sepsis, and meningitis-pharmacokinetic models were identified for common for beta-lactam antibiotics. Real-world demographics were derived from three multicenter point prevalence surveys. Simulation results were compared with minimum inhibitory concentration distributions to inform appropriateness of recommended doses in targeted and empiric treatment. While cephalosporin dosing regimens are largely adequate for target attainment, they also pose the most risk of neurotoxicity. Our review highlights aminopenicillin, piperacillin, and meropenem doses as potentially requiring review/optimization in order to preserve the use of these agents in future.
Collapse
Affiliation(s)
- Silke Gastine
- Infection, Immunity and Inflammation Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Yingfen Hsia
- School of PharmacyQueen’s University BelfastBelfastUK
| | | | - Charlotte I.S. Barker
- Department of Medical & Molecular GeneticsKing’s College LondonLondonUK
- Paediatric Infectious Diseases Research GroupInstitute for Infection and ImmunitySt George’s University of LondonLondonUK
| | - Julia Bielicki
- Paediatric Infectious Diseases Research GroupInstitute for Infection and ImmunitySt George’s University of LondonLondonUK
- Paediatric Pharmacology GroupUniversity of Basel Children’s HospitalBaselSwitzerland
| | | | - Mike Sharland
- Paediatric Infectious Diseases Research GroupInstitute for Infection and ImmunitySt George’s University of LondonLondonUK
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of PharmacyGreat Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
16
|
Hughes E, Wallender E, Mohamed Ali A, Jagannathan P, Savic RM. Malaria PK/PD and the Role Pharmacometrics Can Play in the Global Health Arena: Malaria Treatment Regimens for Vulnerable Populations. Clin Pharmacol Ther 2021; 110:926-940. [PMID: 33763871 PMCID: PMC8518425 DOI: 10.1002/cpt.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease which disproportionately effects children and pregnant women. These vulnerable populations are often excluded from clinical trials resulting in one‐size‐fits‐all treatment regimens based on those established for a nonpregnant adult population. Pharmacokinetic/pharmacodynamic (PK/PD) models can be used to optimize dose selection as they define the drug exposure‐response relationship. Additionally, these models are able to identify patient characteristics that cause alterations in the expected PK/PD profiles and through simulations can recommend changes to dosing which compensate for the differences. In this review, we examine how PK/PD models have been applied to optimize antimalarial dosing recommendations for young children, including those who are malnourished, pregnant women, and individuals receiving concomitant therapies such as those for HIV treatment. The malaria field has had great success in utilizing PK/PD models as a foundation to update treatment guidelines and propose the next generation of dosing regimens to investigate in clinical trials. We propose how the malaria field can continue to use modeling to improve therapies by further integrating PK data into clinical studies and including data on drug resistance and host immunity in PK/PD models. Finally, we suggest that other disease areas can achieve similar success in applying pharmacometrics to improve outcomes by implementing three key principals.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Fanello C, Hoglund RM, Lee SJ, Kayembe D, Ndjowo P, Kabedi C, Badjanga BB, Niamyim P, Tarning J, Woodrow C, Gomes M, Day NP, White NJ, Onyamboko MA. Pharmacokinetic Study of Rectal Artesunate in Children with Severe Malaria in Africa. Antimicrob Agents Chemother 2021; 65:e02223-20. [PMID: 33526485 PMCID: PMC8097454 DOI: 10.1128/aac.02223-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
When severe malaria is suspected in children, the WHO recommends pretreatment with a single rectal dose of artesunate before referral to an appropriate facility. This was an individually randomized, open-label, 2-arm, crossover clinical trial in 82 Congolese children with severe falciparum malaria to characterize the pharmacokinetics of rectal artesunate. At admission, children received a single dose of rectal artesunate (10 mg/kg of body weight) followed 12 h later by intravenous artesunate (2.4 mg/kg) or the reverse order. All children also received standard doses of intravenous quinine. Artesunate and dihydroartemisinin were measured at 11 fixed intervals, following 0- and 12-h drug administrations. Clinical, laboratory, and parasitological parameters were measured. After rectal artesunate, artesunate and dihydroartemisinin showed large interindividual variability (peak concentrations of dihydroartemisinin ranged from 5.63 to 8,090 nM). The majority of patients, however, reached previously suggested in vivo IC50 and IC90 values (98.7% and 92.5%, respectively) of combined concentrations of artesunate and dihydroartemisinin between 15 and 30 min after drug administration. The median (interquartile range [IQR]) time above IC50 and IC90 was 5.68 h (2.90 to 6.08) and 2.74 h (1.52 to 3.75), respectively. The absolute rectal bioavailability (IQR) was 25.6% (11.7 to 54.5) for artesunate and 19.8% (10.3 to 35.3) for dihydroartemisinin. The initial 12-h parasite reduction ratio was comparable between rectal and intravenous artesunate: median (IQR), 84.3% (50.0 to 95.4) versus 69.2% (45.7 to 93.6), respectively (P = 0.49). Despite large interindividual variability, rectal artesunate can initiate and sustain rapid parasiticidal activity in most children with severe falciparum malaria while they are transferred to a facility where parenteral artesunate is available. (This study has been registered at ClinicalTrials.gov under identifier NCT02492178.).
Collapse
Affiliation(s)
- Caterina Fanello
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Richard M Hoglund
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sue J Lee
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daddy Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pauline Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Charlie Kabedi
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Benjamin B Badjanga
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Phettree Niamyim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Melba Gomes
- World Health Organization, Geneva, Switzerland
| | - Nick P Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
18
|
Rayner CR, Smith PF, Andes D, Andrews K, Derendorf H, Friberg LE, Hanna D, Lepak A, Mills E, Polasek TM, Roberts JA, Schuck V, Shelton MJ, Wesche D, Rowland‐Yeo K. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin Pharmacol Ther 2021; 109:867-891. [PMID: 33555032 PMCID: PMC8014105 DOI: 10.1002/cpt.2198] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Model-informed drug development (MIDD) has a long and rich history in infectious diseases. This review describes foundational principles of translational anti-infective pharmacology, including choice of appropriate measures of exposure and pharmacodynamic (PD) measures, patient subpopulations, and drug-drug interactions. Examples are presented for state-of-the-art, empiric, mechanistic, interdisciplinary, and real-world evidence MIDD applications in the development of antibacterials (review of minimum inhibitory concentration-based models, mechanism-based pharmacokinetic/PD (PK/PD) models, PK/PD models of resistance, and immune response), antifungals, antivirals, drugs for the treatment of global health infectious diseases, and medical countermeasures. The degree of adoption of MIDD practices across the infectious diseases field is also summarized. The future application of MIDD in infectious diseases will progress along two planes; "depth" and "breadth" of MIDD methods. "MIDD depth" refers to deeper incorporation of the specific pathogen biology and intrinsic and acquired-resistance mechanisms; host factors, such as immunologic response and infection site, to enable deeper interrogation of pharmacological impact on pathogen clearance; clinical outcome and emergence of resistance from a pathogen; and patient and population perspective. In particular, improved early assessment of the emergence of resistance potential will become a greater focus in MIDD, as this is poorly mitigated by current development approaches. "MIDD breadth" refers to greater adoption of model-centered approaches to anti-infective development. Specifically, this means how various MIDD approaches and translational tools can be integrated or connected in a systematic way that supports decision making by key stakeholders (sponsors, regulators, and payers) across the entire development pathway.
Collapse
Affiliation(s)
- Craig R. Rayner
- CertaraPrincetonNew JerseyUSA
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - David Andes
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kayla Andrews
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | | | | | - Debra Hanna
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Alex Lepak
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Thomas M. Polasek
- CertaraPrincetonNew JerseyUSA
- Centre for Medicines Use and SafetyMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PharmacologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Jason A. Roberts
- Faculty of MedicineUniversity of Queensland Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Departments of Pharmacy and Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
- Division of Anaesthesiology Critical Care Emergency and Pain MedicineNîmes University HospitalUniversity of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
19
|
Sjögren E, Tarning J, Barnes KI, Jonsson EN. A Physiologically-Based Pharmacokinetic Framework for Prediction of Drug Exposure in Malnourished Children. Pharmaceutics 2021; 13:pharmaceutics13020204. [PMID: 33540928 PMCID: PMC7913226 DOI: 10.3390/pharmaceutics13020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Malnutrition in children is a global health problem, particularly in developing countries. The effects of an insufficient supply of nutrients on body composition and physiological functions may have implications for drug disposition and ultimately affect the clinical outcome in this vulnerable population. Physiologically-based pharmacokinetic (PBPK) modeling can be used to predict the effect of malnutrition as it links physiological changes to pharmacokinetic (PK) consequences. However, the absence of detailed information on body composition and the limited availability of controlled clinical trials in malnourished children complicates the establishment and evaluation of a generic PBPK model in this population. In this manuscript we describe the creation of physiologically-based bridge to a malnourished pediatric population, by combining information on (a) the differences in body composition between healthy and malnourished adults and (b) the differences in physiology between healthy adults and children. Model performance was confirmed using clinical reference data. This study presents a physiologically-based translational framework for prediction of drug disposition in malnourished children. The model is readily applicable for dose recommendation strategies to address the urgent medicinal needs of this vulnerable population.
Collapse
Affiliation(s)
- Erik Sjögren
- Pharmetheus AB, 752 37 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-737-750-545
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Karen I. Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa;
- WorldWide Antimalarial Resistance Network (WWARN) Pharmacology Scientific Working Group, University of Cape Town, Cape Town 7925, South Africa
| | | |
Collapse
|
20
|
Anyorigiya TA, Castel S, Mauff K, Atuguba F, Ogutu B, Oduro A, Dosoo D, Asante KP, Owusu-Agyei S, Dodoo A, Hodgson A, Binka F, Workman LJ, Allen EN, Denti P, Wiesner L, Barnes KI. Pharmacokinetic profile of amodiaquine and its active metabolite desethylamodiaquine in Ghanaian patients with uncomplicated falciparum malaria. Malar J 2021; 20:18. [PMID: 33407454 PMCID: PMC7788723 DOI: 10.1186/s12936-020-03553-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Accurate measurement of anti-malarial drug concentrations in therapeutic efficacy studies is essential to distinguish between inadequate drug exposure and anti-malarial drug resistance, and to inform optimal anti-malarial dosing in key target population groups. METHODS A sensitive and selective LC-MS/MS method was developed and validated for the simultaneous determination of amodiaquine and its active metabolite, desethylamodiaquine, and used to describe their pharmacokinetic parameters in Ghanaian patients with uncomplicated falciparum malaria treated with the fixed-dose combination, artesunate-amodiaquine. RESULTS The day-28 genotype-adjusted adequate clinical and parasitological response rate in 308 patients studied was > 97% by both intention-to-treat and per-protocol analysis. After excluding 64 patients with quantifiable amodiaquine concentrations pre-treatment and 17 with too few quantifiable concentrations, the pharmacokinetic analysis included 227 patients (9 infants, 127 aged 1-4 years, 91 aged ≥ 5 years). Increased median day-3 amodiaquine concentrations were associated with a lower risk of treatment failure [HR 0.87 (95% CI 0.78-0.98), p = 0.021]. Amodiaquine exposure (median AUC0-∞) was significantly higher in infants (4201 ng h/mL) and children aged 1-5 years (1994 ng h/mL) compared to older children and adults (875 ng h/mL, p = 0.001), even though infants received a lower mg/kg amodiaquine dose (median 25.3 versus 33.8 mg/kg in older patients). Desethylamodiaquine AUC0-∞ was not significantly associated with age. No significant safety concerns were identified. CONCLUSIONS Efficacy of artesunate-amodiaquine at currently recommended dosage regimens was high across all age groups. Reassuringly, amodiaquine and desethylamodiaquine exposure was not reduced in underweight-for-age young children or those with high parasitaemia, two of the most vulnerable target populations. A larger pharmacokinetic study with close monitoring of safety, including full blood counts and liver function tests, is needed to confirm the higher amodiaquine exposure in infants, understand any safety implications and assess whether dose optimization in this vulnerable, understudied population is needed.
Collapse
Affiliation(s)
- Thomas A Anyorigiya
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- UCT/MRC Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), University of Cape Town, Cape Town, South Africa
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Katya Mauff
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Atuguba
- Navrongo Health Research Centre, Navrongo, Ghana
- Dodowa Health Research Centre, Dodowa, Ghana
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana
| | | | - Seth Owusu-Agyei
- University for Health and Allied Sciences, Ho, Volta Region, Ghana
| | | | - Abraham Hodgson
- Navrongo Health Research Centre, Navrongo, Ghana
- Research and Development Division, Ghana Health Service, Accra, Ghana
| | - Fred Binka
- University for Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Lesley J Workman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- UCT/MRC Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), University of Cape Town, Cape Town, South Africa
| | - Elizabeth N Allen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- UCT/MRC Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- UCT/MRC Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- UCT/MRC Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), University of Cape Town, Cape Town, South Africa
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
- UCT/MRC Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
21
|
Mumtaz R, Okell LC, Challenger JD. Asymptomatic recrudescence after artemether-lumefantrine treatment for uncomplicated falciparum malaria: a systematic review and meta-analysis. Malar J 2020; 19:453. [PMID: 33298080 PMCID: PMC7724891 DOI: 10.1186/s12936-020-03520-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Background In clinical trials of therapy for uncomplicated Plasmodium falciparum, there are usually some patients who fail treatment even in the absence of drug resistance. Treatment failures, which can be due to recrudescence or re-infection, are categorized as ‘clinical’ or ‘parasitological’ failures, the former indicating that symptoms have returned. Asymptomatic recrudescence has public health implications for continued malaria transmission and may be important for the spread of drug-resistant malaria. As the number of recrudescences in an individual trial is often low, it is difficult to assess how commonplace asymptomatic recrudescence is, and with what factors it is associated. Methods A systematic literature review was carried out on clinical trials of artemether-lumefantrine (AL) in patients seeking treatment for symptomatic uncomplicated falciparum malaria, and information on symptoms during treatment failure was recorded. Only treatment failures examined by polymerase chain reaction (PCR) were included, so as to exclude re-infections. A multivariable Bayesian regression model was used to explore factors potentially explaining the proportion of recrudescent infections which are symptomatic across the trials included in the study. Results Across 60 published trials, including 9137 malaria patients, 37.8% [95% CIs (26.6–49.4%)] of recrudescences were symptomatic. A positive association was found between transmission intensity and the observed proportion of recrudescences that were asymptomatic. Symptoms were more likely to return in trials that only enrolled children aged < 72 months [odds ratio = 1.62, 95% CIs (1.01, 2.59)]. However, 84 studies had to be excluded from this analysis, as recrudescences were not specified as symptomatic or asymptomatic. Conclusions AL, the most widely used treatment for uncomplicated P. falciparum in Africa, remains a highly efficacious drug in most endemic countries. However in the small proportion of patients where AL does not clear parasitaemia, the majority of patients do not develop symptoms again and thus would be unlikely to seek another course of treatment. This continued asymptomatic parasite carriage in patients who have been treated may have implications for drug-resistant parasites being introduced into high-transmissions settings.
Collapse
Affiliation(s)
- Rida Mumtaz
- Faculty of Medicine, Imperial College London, London, UK
| | - Lucy C Okell
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Joseph D Challenger
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| |
Collapse
|
22
|
Suzan V, Unal D. Comparison of attention for malnutrition research on social media versus academia: Altmetric score analysis. Nutrition 2020; 82:111060. [PMID: 33340854 DOI: 10.1016/j.nut.2020.111060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/24/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES In this study, we aimed to provide bibliometric and Altmetric overviews and visualization and to evaluate the correlation between traditional bibliometric and Altmetric analyses in the field of malnutrition. METHODS Articles published in the past decade were identified by searching for the term "malnutrition" on the Web of Science indexing database and research platform. The top 50 cited articles were analyzed in terms of title, study type, topic of study, first author, publication year, citation number, keywords, organizations, average citations per year, journal H index, impact factor, and Altmetric attention score. Also, the top 50 Altmetric articles published in the past decade about malnutrition were provided on the website Altmetric.com. RESULTS Among the top 50 cited articles, the most common study type, topic of study, publication year, and keyword were, respectively, original scientific paper (n = 26), definition-diagnosis of malnutrition (n = 17), 2010 (n = 13), and malnutrition (n = 18). The article titled "Maternal and child undernutrition and overweight in low-income and middle-income countries" in Lancet had the highest citation number, and the article "Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality" in Lancet had the highest Altmetric score. CONCLUSIONS Evaluating academic publications with an Altmeric analysis in addition to a traditional bibliometric analysis is beneficial because Altmetric attention scores can give information about what the population wants to know about malnutrition and allows us to develop appropriate policies.
Collapse
Affiliation(s)
- Veysel Suzan
- Division of Geriatric Medicine, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Damla Unal
- Division of Geriatric Medicine, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
23
|
Ouédraogo M, Kangoye DT, Samadoulougou S, Rouamba T, Donnen P, Kirakoya-Samadoulougou F. Malaria Case Fatality Rate among Children under Five in Burkina Faso: An Assessment of the Spatiotemporal Trends Following the Implementation of Control Programs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1840. [PMID: 32178354 PMCID: PMC7143776 DOI: 10.3390/ijerph17061840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Reducing the 2015 level of malaria mortality by 90% by 2030 is a goal set by the World Health Organization (WHO). In Burkina Faso, several malaria control programs proven to be effective were implemented over the last decade. In parallel, the progressive strengthening of the health surveillance system is generating valuable data, which represents a great opportunity for analyzing the trends in malaria burden and assessing the effect of these control programs. Complementary programs were rolled out at different time points and paces, and the present work aims at investigating both the spatial and temporal pattern of malaria case fatality rate (mCFR) by considering the effect of combining specific and unspecific malaria control programs. To this end, data on severe malaria cases and malaria deaths, aggregated at health district level between January 2013 and December 2018, were extracted from the national health data repository (ENDOS-BF). A Bayesian spatiotemporal zero-inflated Poisson model was fitted to quantify the strength of the association of malaria control programs with monthly mCFR trends at health district level. The model was adjusted for contextual variables. We found that monthly mCFR decreased from 2.0 (95% IC 1.9-2.1%) to 0.9 (95% IC 0.8-1.0%) deaths for 100 severe malaria cases in 2013 and 2018, respectively. Health districts with high mCFR were identified in the northern, northwestern and southwestern parts of the country. The availability of malaria rapid diagnosis tests (IRR: 0.54; CrI: 0.47, 0.62) and treatment (IRR: 0.50; CrI: 0.41, 0.61) were significantly associated with a reduction in the mCFR. The risk of dying from malaria was lower in the period after the free healthcare policy compared with the period before (IRR: 0.47; CrI: 0.38, 0.58). Our findings highlighted locations that are most in need of targeted interventions and the necessity to sustain and strengthen the launched health programs to further reduce the malaria deaths in Burkina Faso.
Collapse
Affiliation(s)
- Mady Ouédraogo
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.O.); (T.R.); (P.D.)
- Institut de Recherche Santé et Sociétés, Faculté de Santé Publique, Université catholique de Louvain, 1200 Brussels, Belgium
- Institut National de la Statistique et de la Démographie [INSD], 01 BP 374 Ouagadougou 01, Burkina Faso
| | - David Tiga Kangoye
- Centre National de Recherche et de Formation sur le Paludisme [CNRFP], 01 BP 2208 Ouagadougou 101, Burkina Faso;
| | - Sékou Samadoulougou
- Evaluation Platform on Obesity Prevention, Quebec Heart and Lung Institute, Quebec, QC G1V 4G5, Canada;
- Centre for Research on Planning and Development (CRAD), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Toussaint Rouamba
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.O.); (T.R.); (P.D.)
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, 42 Avenue Kumda-Yonre, Ouagadougou, Kadiogo 11 BP 218 Ouagadougou CMS 11, Burkina Faso
| | - Philippe Donnen
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.O.); (T.R.); (P.D.)
- Centre de Recherche en Politiques et systèmes de santé-Santé internationale, École de Santé Publique Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Fati Kirakoya-Samadoulougou
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.O.); (T.R.); (P.D.)
| |
Collapse
|
24
|
Ding J, Coldiron ME, Assao B, Guindo O, Blessborn D, Winterberg M, Grais RF, Koscalova A, Langendorf C, Tarning J. Adherence and Population Pharmacokinetic Properties of Amodiaquine When Used for Seasonal Malaria Chemoprevention in African Children. Clin Pharmacol Ther 2019; 107:1179-1188. [PMID: 31652336 PMCID: PMC7232861 DOI: 10.1002/cpt.1707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023]
Abstract
Poor adherence to seasonal malaria chemoprevention (SMC) might affect the protective effectiveness of SMC. Here, we evaluated the population pharmacokinetic properties of amodiaquine and its active metabolite, desethylamodiaquine, in children receiving SMC under directly observed ideal conditions (n = 136), and the adherence of SMC at an implementation phase in children participating in a case‐control study to evaluate SMC effectiveness (n = 869). Amodiaquine and desethylamodiaquine concentration‐time profiles were described simultaneously by two‐compartment and three‐compartment disposition models, respectively. The developed methodology to evaluate adherence showed a sensitivity of 65–71% when the first dose of SMC was directly observed and 71–73% when no doses were observed in a routine programmatic setting. Adherence simulations and measured desethylamodiaquine concentrations in the case‐control children showed complete adherence (all doses taken) in < 20% of children. This result suggests that more efforts are needed urgently to improve the adherence to SMC among children in this area.
Collapse
Affiliation(s)
- Junjie Ding
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The WorldWide Antimalarial Resistance Network, Oxford, UK.,Children's Hospital of Fudan University, Shanghai, China
| | | | | | | | - Daniel Blessborn
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The WorldWide Antimalarial Resistance Network, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|