1
|
van Groen BD, Allegaert K, Tibboel D, de Wildt SN. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br J Clin Pharmacol 2022; 88:4285-4296. [PMID: 32851677 PMCID: PMC9545189 DOI: 10.1111/bcp.14534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact. Filling these gaps may aid better prediction of drug disposition and creation of age-appropriate dosing guidelines. We present innovative approaches to study these developmental changes in relation to drug metabolism and transport. First, analytical methods such as including liquid chromatography-mass spectrometry for proteomic analyses allow quantitation of the expressions of a wide variety of proteins, e.g. membrane transporters, in a small piece of organ tissue. The latter is specifically important for paediatric research, where tissues are scarcely available. Second, innovative study designs using radioactive labelled microtracers allowed study-without risk for the child-of the oral bioavailability of compounds used as markers for certain drug metabolism pathways. Third, the use of modelling and simulation to support dosing recommendations for children is supported by both the European Medicines Agency and the US Food and Drug Administration. This may even do away with the need for a paediatric trial. Physiologically based pharmacokinetics models, which include age-specific physiological information are, therefore, increasingly being used, not only to aid paediatric drug development but also to improve existing drug therapies.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU LeuvenLeuvenBelgium
- Department of Pharmacy and Pharmaceutical Sciences, KU LeuvenLeuvenBelgium
- Department of Clinical Pharmacy, Erasmus MCRotterdamthe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute of Health Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
2
|
Burt T, Roffel AF, Langer O, Anderson K, DiMasi J. Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clin Transl Sci 2022; 15:1355-1379. [PMID: 35278281 PMCID: PMC9199889 DOI: 10.1111/cts.13269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research conducted over the past 2 decades has enhanced the validity and expanded the applications of microdosing and other phase 0 approaches in drug development. Phase 0 approaches can accelerate drug development timelines and reduce attrition in clinical development by increasing the quality of candidates entering clinical development and by reducing the time to "go-no-go" decisions. This can be done by adding clinical trial data (both healthy volunteers and patients) to preclinical candidate selection, and by applying methodological and operational advantages that phase 0 have over traditional approaches. The main feature of phase 0 approaches is the limited, subtherapeutic exposure to the test article. This means a reduced risk to research volunteers, and reduced regulatory requirements, timelines, and costs of first-in-human (FIH) testing. Whereas many operational aspects of phase 0 approaches are similar to those of other early phase clinical development programs, they have some unique strategic, regulatory, ethical, feasibility, economic, and cultural aspects. Here, we provide a guidance to these operational aspects and include case studies to highlight their potential impact in a range of clinical development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Phase-0/Microdosing Network, New York, New York, USA
- Burt Consultancy, LLC, New York, New York, USA
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Joseph DiMasi
- Tufts Center for the Study of Drug Development, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
van Groen BD, Pilla Reddy V, Badée J, Olivares‐Morales A, Johnson TN, Nicolaï J, Annaert P, Smits A, de Wildt SN, Knibbe CAJ, de Zwart L. Pediatric Pharmacokinetics and Dose Predictions: A Report of a Satellite Meeting to the 10th Juvenile Toxicity Symposium. Clin Transl Sci 2021; 14:29-35. [PMID: 32702198 PMCID: PMC7877839 DOI: 10.1111/cts.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
On April 24, 2019, a symposium on Pediatric Pharmacokinetics and Dose Predictions was held as a satellite meeting to the 10th Juvenile Toxicity Symposium. This symposium brought together scientists from academia, industry, and clinical research organizations with the aim to update each other on the current knowledge on pediatric drug development. Through more knowledge on specific ontogeny profiles of drug metabolism and transporter proteins, integrated into physiologically-based pharmacokinetic (PBPK) models, we have gained a more integrated understanding of age-related differences in pharmacokinetics (PKs), Relevant examples were presented during the meeting. PBPK may be considered the gold standard for pediatric PK prediction, but still it is important to know that simpler methods, such as allometry, allometry combined with maturation function, functions based on the elimination pathway, or linear models, also perform well, depending on the age range or the mechanisms involved. Knowledge from different methods and information sources should be combined (e.g., microdosing can reveal early read-out of age-related differences in exposure), and such results can be a value to verify models. To further establish best practices for dose setting in pediatrics, more in vitro and in vivo research is needed on aspects such as age-related changes in the exposure-response relationship and the impact of disease on PK. New information coupled with the refining of model-based drug development approaches will allow faster targeting of intended age groups and allow more efficient design of pediatric clinical trials.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children’s HospitalRotterdamThe Netherlands
- Roche Pharma and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | | | - Justine Badée
- Center for Pharmacometrics & Systems PharmacologyDepartment of PharmaceuticsUniversity of Florida at Lake NonaOrlandoFloridaUSA
- Modelling & SimulationNovartis Institutes for Biomedical ResearchBaselSwitzerland
| | | | | | - Johan Nicolaï
- Development ScienceUCB BioPharma SRLBraine‐l’AlleudBelgium
| | - Pieter Annaert
- Drug Delivery and DispositionKU Leuven Department of Pharmaceutical and Pharmacological SciencesLeuvenBelgium
| | - Anne Smits
- Neonatal Intensive Care UnitUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children’s HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute for Health SciencesRadboud UniversityNijmegenThe Netherlands
| | - Catherijne A. J. Knibbe
- Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Department of Clinical PharmacySt. Antonius HospitalNieuwegeinThe Netherlands
| | - Loeckie de Zwart
- Drug Metabolism and PharmacokineticsJanssen R&D, a Division of Janssen Pharmaceutica NVBeerseBelgium
| |
Collapse
|
4
|
van Groen BD, van Duijn E, de Vries A, Mooij MG, Tibboel D, Vaes WHJ, de Wildt SN. Proof of Concept: First Pediatric [ 14 C]microtracer Study to Create Metabolite Profiles of Midazolam. Clin Pharmacol Ther 2020; 108:1003-1009. [PMID: 32386327 PMCID: PMC7689753 DOI: 10.1002/cpt.1884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
Abstract
Growth and development affect drug-metabolizing enzyme activity thus could alter the metabolic profile of a drug. Traditional studies to create metabolite profiles and study the routes of excretion are unethical in children due to the high radioactive burden. To overcome this challenge, we aimed to show the feasibility of an absorption, distribution, metabolism, and excretion (ADME) study using a [14 C]midazolam microtracer as proof of concept in children. Twelve stable, critically ill children received an oral [14 C]midazolam microtracer (20 ng/kg; 60 Bq/kg) while receiving intravenous therapeutic midazolam. Blood was sampled up to 24 hours after dosing. A time-averaged plasma pool per patient was prepared reflecting the mean area under the curve plasma level, and subsequently one pool for each age group (0-1 month, 1-6 months, 0.5-2 years, and 2-6 years). For each pool [14 C]levels were quantified by accelerator mass spectrometry, and metabolites identified by high resolution mass spectrometry. Urine and feces (n = 4) were collected up to 72 hours. The approach resulted in sufficient sensitivity to quantify individual metabolites in chromatograms. [14 C]1-OH-midazolam-glucuronide was most abundant in all but one age group, followed by unchanged [14 C]midazolam and [14 C]1-OH-midazolam. The small proportion of unspecified metabolites most probably includes [14 C]midazolam-glucuronide and [14 C]4-OH-midazolam. Excretion was mainly in urine; the total recovery in urine and feces was 77-94%. This first pediatric pilot study makes clear that using a [14 C]midazolam microtracer is feasible and safe to generate metabolite profiles and study recovery in children. This approach is promising for first-in-child studies to delineate age-related variation in drug metabolite profiles.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
| | | | | | - Miriam G. Mooij
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
- Department of PediatricsLeiden University Medical CenterLeidenThe Netherlands
- Department of Pharmacology and ToxicologyRadboud UniversityNijmegenThe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
| | | | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
5
|
Eke AC, Olagunju A, Best BM, Mirochnick M, Momper JD, Abrams E, Penazzato M, Cressey TR, Colbers A. Innovative Approaches for Pharmacology Studies in Pregnant and Lactating Women: A Viewpoint and Lessons from HIV. Clin Pharmacokinet 2020; 59:1185-1194. [PMID: 32757103 PMCID: PMC7550310 DOI: 10.1007/s40262-020-00915-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medication use during pregnancy in the absence of pharmacokinetic and safety data is common, particularly for antiretrovirals, as pregnant women are not usually included in clinical trials leading to drug licensure. To date, data are typically generated through opportunistic pregnancy studies performed in the postmarketing setting, leading to a substantial time-lag between initial regulatory approval of a drug and availability of essential pregnancy-specific pharmacokinetic and safety data. During this period, health care providers lack key information on human placental transfer, fetal exposure, optimal maternal dosing in pregnancy, and maternal and fetal drug toxicity, including teratogenicity risk. We discuss new approaches that could facilitate the acquisition of these critical data earlier in the drug development process, aiding clinicians and patients in making informed decisions on drug selection and dosing during pregnancy. An integrated approach utilizing multiple novel methodologies (in vitro, ex vivo, in silico and in vivo) is needed to accelerate the availability of pharmacology data in pregnancy and lactation.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600N Wolfe Street, Phipps 215, Baltimore, MD, 21287, USA
| | - Adeniyi Olagunju
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Brookie M Best
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
- Pediatrics Department, University of California San Diego School of Medicine-Rady Children's Hospital San Diego, San Diego, CA, USA
| | | | - Jeremiah D Momper
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Elaine Abrams
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martina Penazzato
- HIV, Hepatitis and STI Department, World Health Organization, Geneva, Switzerland
| | - Tim R Cressey
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- PHPT/IRD 174, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Immunology and Infectious Diseases, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
7
|
Enteral Acetaminophen Bioavailability in Pediatric Intensive Care Patients Determined With an Oral Microtracer and Pharmacokinetic Modeling to Optimize Dosing. Crit Care Med 2020; 47:e975-e983. [PMID: 31609773 DOI: 10.1097/ccm.0000000000004032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Decreasing morbidity and mortality by rationalizing drug treatment in the critically ill is of paramount importance but challenging as the underlying clinical condition may lead to large variation in drug disposition and response. New microtracer methodology is now available to gain knowledge on drug disposition in the intensive care. On the basis of studies in healthy adults, physicians tend to assume that oral doses of acetaminophen will be completely absorbed and therefore prescribe the same dose per kilogram for oral and IV administration. As the oral bioavailability of acetaminophen in critically ill children is unknown, we designed a microtracer study to shed a light on this issue. DESIGN An innovative microtracer study design with population pharmacokinetics. SETTING A tertiary referral PICU. PATIENTS Stable critically ill children, 0-6 years old, and already receiving IV acetaminophen. INTERVENTIONS Concomitant administration of an oral C radiolabeled acetaminophen microtracer (3 ng/kg) with IV acetaminophen treatment (15 mg/kg every 6 hr). MEASUREMENTS Blood was drawn from an indwelling arterial or central venous catheter up to 24 hours after C acetaminophen microtracer administration. Acetaminophen concentrations were measured by liquid chromatography-mass spectrometry and C concentrations by accelerated mass spectrometry. MAIN RESULTS In 47 patients (median age of 6.1 mo; Q1-Q3, 1.8-20 mo) the mean enteral bioavailability was 72% (range, 11-91%). With a standard dose (15 mg/kg 4 times daily), therapeutic steady-state concentrations were 2.5 times more likely to be reached with IV than with oral administration. CONCLUSIONS Microtracer studies present a new opportunity to gain knowledge on drug disposition in the intensive care. Using this modality in children in the pediatric intensive care, we showed that enteral administration of acetaminophen results in less predictable exposure and higher likelihood of subtherapeutic blood concentration than does IV administration. IV dosing may be preferable to ensure adequate pain relief.
Collapse
|
8
|
Germovsek E, Barker CIS, Sharland M, Standing JF. Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance. Clin Pharmacokinet 2020; 58:39-52. [PMID: 29675639 PMCID: PMC6325987 DOI: 10.1007/s40262-018-0659-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies.
Collapse
Affiliation(s)
- Eva Germovsek
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Heath, University College London, London, UK. .,Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, 751 24, Uppsala, Sweden.
| | - Charlotte I S Barker
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Heath, University College London, London, UK.,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Mike Sharland
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Heath, University College London, London, UK.,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, UK
| |
Collapse
|
9
|
van Groen BD, Vaes WH, Park BK, Krekels EHJ, van Duijn E, Kõrgvee LT, Maruszak W, Grynkiewicz G, Garner RC, Knibbe CAJ, Tibboel D, de Wildt SN, Turner MA. Dose-linearity of the pharmacokinetics of an intravenous [ 14 C]midazolam microdose in children. Br J Clin Pharmacol 2019; 85:2332-2340. [PMID: 31269280 PMCID: PMC6783587 DOI: 10.1111/bcp.14047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023] Open
Abstract
Aims Drug disposition in children may vary from adults due to age‐related variation in drug metabolism. Microdose studies present an innovation to study pharmacokinetics (PK) in paediatrics; however, they should be used only when the PK is dose linear. We aimed to assess dose linearity of a [14C]midazolam microdose, by comparing the PK of an intravenous (IV) microtracer (a microdose given simultaneously with a therapeutic midazolam dose), with the PK of a single isolated microdose. Methods Preterm to 2‐year‐old infants admitted to the intensive care unit received [14C]midazolam IV as a microtracer or microdose, followed by dense blood sampling up to 36 hours. Plasma concentrations of [14C]midazolam and [14C]1‐hydroxy‐midazolam were determined by accelerator mass spectrometry. Noncompartmental PK analysis was performed and a population PK model was developed. Results Of 15 infants (median gestational age 39.4 [range 23.9–41.4] weeks, postnatal age 11.4 [0.6–49.1] weeks), 6 received a microtracer and 9 a microdose of [14C]midazolam (111 Bq kg−1; 37.6 ng kg−1). In a 2‐compartment PK model, bodyweight was the most significant covariate for volume of distribution. There was no statistically significant difference in any PK parameter between the microdose and microtracer, nor in the area under curve ratio [14C]1‐OH‐midazolam/[14C]midazolam, showing the PK of midazolam to be linear within the range of the therapeutic and microdoses. Conclusion Our data support the dose linearity of the PK of an IV [14C]midazolam microdose in children. Hence, a [14C]midazolam microdosing approach may be used as an alternative to a therapeutic dose of midazolam to study developmental changes in hepatic CYP3A activity in young children.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Catherijne A J Knibbe
- Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Dick Tibboel
- Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Saskia N de Wildt
- Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.,Radboud University, Nijmegen, the Netherlands
| | | |
Collapse
|
10
|
Burt T, Vuong LT, Baker E, Young GC, McCartt AD, Bergstrom M, Sugiyama Y, Combes R. Phase 0, including microdosing approaches: Applying the Three Rs and increasing the efficiency of human drug development. Altern Lab Anim 2019; 46:335-346. [PMID: 30657329 DOI: 10.1177/026119291804600603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches, including microdosing, involve the use of sub-therapeutic exposures to the tested drugs, thus enabling safer, more-relevant, quicker and cheaper first-in-human (FIH) testing. These approaches also have considerable potential to limit the use of animals in human drug development. Recent years have witnessed progress in applications, methodology, operations, and drug development culture. Advances in applications saw an expansion in therapeutic areas, developmental scenarios and scientific objectives, in, for example, protein drug development and paediatric drug development. In the operational area, the increased sensitivity of Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS), expansion of the utility of Positron Emission Tomography (PET) imaging, and the introduction of Cavity Ring-Down Spectroscopy (CRDS), have led to the increased accessibility and utility of Phase 0 approaches, while reducing costs and exposure to radioactivity. PET has extended the application of microdosing, from its use as a predominant tool to record pharmacokinetics, to a method for recording target expression and target engagement, as well as cellular and tissue responses. Advances in methodology include adaptive Phase 0/Phase 1 designs, cassette and cocktail microdosing, and Intra-Target Microdosing (ITM), as well as novel modelling opportunities and simulations. Importantly, these methodologies increase the predictive power of extrapolation from microdose to therapeutic level exposures. However, possibly the most challenging domain in which progress has been made, is the culture of drug development. One of the main potential values of Phase 0 approaches is the opportunity to terminate development early, thus not only applying the principle of 'kill-early-kill-cheap' to enhance the efficiency of drug development, but also obviating the need for the full package of animal testing required for therapeutic level Phase 1 studies. Finally, we list developmental scenarios that utilised Phase 0 approaches in novel drug development.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy, LLC, Durham, NC, USA
| | | | - Elizabeth Baker
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Graeme C Young
- Translational Medicine, Research, GSK, David Jack Centre for R&D, Ware, Hertfordshire, UK
| | | | - Mats Bergstrom
- Department of Pharmacology and PET-centre, Uppsala University, Uppsala, Sweden
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN (The Institute of Physical and Chemical Research(, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
11
|
Balevic SJ, Cohen-Wolkowiez M. Innovative Study Designs Optimizing Clinical Pharmacology Research in Infants and Children. J Clin Pharmacol 2018; 58 Suppl 10:S58-S72. [PMID: 30248192 PMCID: PMC6310922 DOI: 10.1002/jcph.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Almost half of recent pediatric trials failed to achieve labeling indications, in large part because of inadequate study design. Therefore, innovative study methods are crucial to optimizing trial design while also reducing the potential harms inherent with drug investigation. Several methods exist to optimize the amount of pharmacokinetic data collected from the smallest possible volume and with the fewest number of procedures, including the use of opportunistic and sparse sampling, alternative and noninvasive matrices, and microvolume assays. In addition, large research networks using master protocols promote collaboration, reduce regulatory burden, and increase trial efficiency for both early- and late-phase trials. Large pragmatic trials that leverage electronic health records can capitalize on central management strategies to reduce costs, enroll patients with rare diseases on a large scale, and augment study generalizability. Further, trial efficiency and safety can be optimized through Bayesian adaptive techniques that permit planned protocol changes based on analyses of prior and accumulated data. In addition to these trial design features, advances in modeling and simulation have paved the way for systems-based and physiologically based models that individualize pediatric dosing recommendations and support drug approval. Last, given the low prevalence of many pediatric diseases, collecting deidentified genetic and clinical data on a large scale is a potentially transformative way to augment clinical pharmacology research in children.
Collapse
Affiliation(s)
- Stephen J. Balevic
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
Mooij MG, van Duijn E, Knibbe CAJ, Allegaert K, Windhorst AD, van Rosmalen J, Hendrikse NH, Tibboel D, Vaes WHJ, de Wildt SN. Successful Use of [ 14C]Paracetamol Microdosing to Elucidate Developmental Changes in Drug Metabolism. Clin Pharmacokinet 2018; 56:1185-1195. [PMID: 28155137 PMCID: PMC5591809 DOI: 10.1007/s40262-017-0508-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background We previously showed the practical and ethical feasibility of using [14C]-microdosing for pharmacokinetic studies in children. We now aimed to show that this approach can be used to elucidate developmental changes in drug metabolism, more specifically, glucuronidation and sulfation, using [14C]paracetamol (AAP). Methods Infants admitted to the intensive care unit received a single oral [14C]AAP microdose while receiving intravenous therapeutic AAP every 6 h. [14C]AAP pharmacokinetic parameters were estimated. [14C]AAP and metabolites were measured with accelerator mass spectrometry. The plasma area under the concentration-time curve from time zero to infinity and urinary recovery ratios were related to age as surrogate markers of metabolism. Results Fifty children [median age 6 months (range 3 days–6.9 years)] received a microdose (3.3 [2.0–3.5] ng/kg; 64 [41–71] Bq/kg). Plasma [14C]AAP apparent total clearance was 0.4 (0.1–2.6) L/h/kg, apparent volume of distribution was 1.7 (0.9–8.2) L/kg, and the half-life was 2.8 (1–7) h. With increasing age, plasma and urinary AAP-glu/AAP and AAP-glu/AAP-sul ratios significantly increased by four fold, while the AAP-sul/AAP ratio significantly decreased. Conclusion Using [14C]labeled microdosing, the effect of age on orally administered AAP metabolism was successfully elucidated in both plasma and urine. With minimal burden and risk, microdosing is attractive to study developmental changes in drug disposition in children.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Catherijne A J Knibbe
- Division of Pharmacology, Faculty of Science, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Karel Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - N Harry Hendrikse
- Department of Pharmacy and Clinical Pharmacology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
- Department of Pharmacology and Toxicology, Radboud University, PO box 9101, Geert Grooteplein 21, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
13
|
Barker CIS, Standing JF, Kelly LE, Hanly Faught L, Needham AC, Rieder MJ, de Wildt SN, Offringa M. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child 2018; 103:695-702. [PMID: 29674514 PMCID: PMC6047150 DOI: 10.1136/archdischild-2017-314506] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
Optimising the dosing of medicines for neonates and children remains a challenge. The importance of pharmacokinetic (PK) and pharmacodynamic (PD) research is recognised both in medicines regulation and paediatric clinical pharmacology, yet there remain barriers to undertaking high-quality PK and PD studies. While these studies are essential in understanding the dose-concentration-effect relationship and should underpin dosing recommendations, this review examines how challenges affecting the design and conduct of paediatric pharmacological studies can be overcome using targeted pharmacometric strategies. Model-based approaches confer benefits at all stages of the drug life-cycle, from identifying the first dose to be used in children, to clinical trial design, and optimising the dosing regimens of older, off-patent medications. To benefit patients, strategies to ensure that new PK, PD and trial data are incorporated into evidence-based dosing recommendations are needed. This review summarises practical strategies to address current challenges, particularly the use of model-based (pharmacometric) approaches in study design and analysis. Recommendations for practice and directions for future paediatric pharmacological research are given, based on current literature and our joint international experience. Success of PK research in children requires a robust infrastructure, with sustainable funding mechanisms at its core, supported by political and regulatory initiatives, and international collaborations. There is a unique opportunity to advance paediatric medicines research at an unprecedented pace, bringing the age of evidence-based paediatric pharmacotherapy into sight.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s University of London, London, UK,Paediatric Infectious Diseases Unit, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s University of London, London, UK
| | - Lauren E Kelly
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada,Clinical Trials Platform, George and Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| | - Lauren Hanly Faught
- Departments of Paediatrics, Physiology and Pharmacology and Medicine, Western University, London, Ontario, Canada,Molecular Medicine Group, Robarts Research Institute, London, Ontario, Canada
| | - Allison C Needham
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J Rieder
- Departments of Paediatrics, Physiology and Pharmacology and Medicine, Western University, London, Ontario, Canada,Molecular Medicine Group, Robarts Research Institute, London, Ontario, Canada
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands,Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Martin Offringa
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Ufer M, Juif PE, Boof ML, Muehlan C, Dingemanse J. Metabolite profiling in early clinical drug development: current status and future prospects. Expert Opin Drug Metab Toxicol 2017; 13:803-806. [DOI: 10.1080/17425255.2017.1351944] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mike Ufer
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Pierre-Eric Juif
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Marie-Laure Boof
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Clemens Muehlan
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
15
|
Safety, dosing, and pharmaceutical quality for studies that evaluate medicinal products (including biological products) in neonates. Pediatr Res 2017; 81:692-711. [PMID: 28248319 DOI: 10.1038/pr.2016.221] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
The study of medications among pediatric patients has increased worldwide since 1997 in response to new legislation and regulations, but these studies have not yet adequately addressed the therapeutic needs of neonates. Additionally, extant guidance developed by regulatory agencies worldwide does not fully address the specificities of neonatal drug development, especially among extremely premature newborns who currently survive. Consequently, an international consortium from Canada, Europe, Japan, and the United States was organized by the Critical Path Institute to address the content of guidance. This group included neonatologists, neonatal nurses, parents, regulators, ethicists, clinical pharmacologists, specialists in pharmacokinetics, specialists in clinical trials and pediatricians working in the pharmaceutical industry. This group has developed a comprehensive, referenced White Paper to guide neonatal clinical trials of medicines - particularly early phase studies. Key points include: the need to base product development on neonatal physiology and pharmacology while making the most of knowledge acquired in other settings; the central role of families in research; and the value of the whole neonatal team in the design, implementation and interpretation of studies. This White Paper should facilitate successful clinical trials of medicines in neonates by informing regulators, sponsors, and the neonatal community of existing good practice.
Collapse
|
16
|
Burt T, Noveck RJ, MacLeod DB, Layton AT, Rowland M, Lappin G. Intra-Target Microdosing (ITM): A Novel Drug Development Approach Aimed at Enabling Safer and Earlier Translation of Biological Insights Into Human Testing. Clin Transl Sci 2017; 10:337-350. [PMID: 28419765 PMCID: PMC5593170 DOI: 10.1111/cts.12464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- T Burt
- Burt Consultancy, LLC, Durham, North Carolina, USA
| | - R J Noveck
- Medical Director, Duke Clinical Research Unit, Durham, North Carolina, USA
| | - D B MacLeod
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - A T Layton
- Robert R. and Katherine B. Penn Professor of Mathematics Arts and Sciences Council Chair Professor of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - M Rowland
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | - G Lappin
- Reader in Pharmaceutical Science, Lincoln School of Pharmacy, University of Lincoln, Lincoln, Lincolnshire, UK
| |
Collapse
|
17
|
Enright HA, Malfatti MA, Zimmermann M, Ognibene T, Henderson P, Turteltaub KW. Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology. Chem Res Toxicol 2016; 29:1976-1986. [PMID: 27726383 PMCID: PMC5203773 DOI: 10.1021/acs.chemrestox.6b00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10-18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.
Collapse
Affiliation(s)
- Heather A. Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Michael A. Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Ted Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Paul Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Kenneth W. Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
18
|
Rieder M, Hawcutt D. Design and conduct of early phase drug studies in children: challenges and opportunities. Br J Clin Pharmacol 2016; 82:1308-1314. [PMID: 27353241 PMCID: PMC5061783 DOI: 10.1111/bcp.13058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022] Open
Abstract
It has historically been very difficult to conduct early phase drug studies in children for a number of reasons related to ethics, acceptability, rarity, standardization, end points, safety, dosing and feasibility. Over the past decade there have been a number of developments including novel clinical trial design, in silico pharmacology and microdosing that have significantly enhanced the ability of investigators to conduct early phase drug studies in children. While the evolution of drug therapy is creating a series of new challenges, there has never been a better time for conducting drug studies in children.
Collapse
Affiliation(s)
- Michael Rieder
- Department of Paediatrics, Robarts Research Institute, University of Western Ontario, Canada.
- Department of Paediatrics, Western University, London, Ontario, Canada.
| | - Daniel Hawcutt
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Burt T, Yoshida K, Lappin G, Vuong L, John C, de Wildt SN, Sugiyama Y, Rowland M. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development. Clin Transl Sci 2016; 9:74-88. [PMID: 26918865 PMCID: PMC5351314 DOI: 10.1111/cts.12390] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- T Burt
- Principal, Burt Consultancy, Durham, NC, 27705, USA
| | - K Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - G Lappin
- Visiting Professor of Pharmacology School of Pharmacy University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - L Vuong
- Principal, LTV Consulting, Davis, CA, USA.,Clinical Advisor at BioCore, Seoul, South Korea
| | - C John
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - S N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Y Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - M Rowland
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, M13 9PT, UK.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| |
Collapse
|
20
|
Lappin G. The expanding utility of microdosing. Clin Pharmacol Drug Dev 2015; 4:401-6. [DOI: 10.1002/cpdd.235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Graham Lappin
- Visiting Professor of Pharmacology; University of Lincoln, School of Pharmacy, Joseph Banks Laboratories; Lincoln UK
| |
Collapse
|