1
|
Jennaro TS, Puskarich MA, Flott TL, McLellan LA, Jones AE, Pai MP, Stringer KA. Kidney function as a key driver of the pharmacokinetic response to high-dose L-carnitine in septic shock. Pharmacotherapy 2023; 43:1240-1250. [PMID: 37775945 PMCID: PMC10841498 DOI: 10.1002/phar.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
STUDY OBJECTIVE Levocarnitine (L-carnitine) has shown promise as a metabolic-therapeutic for septic shock, where mortality approaches 40%. However, high-dose (≥ 6 grams) intravenous supplementation results in a broad range of serum concentrations. We sought to describe the population pharmacokinetics (PK) of high-dose L-carnitine, test various estimates of kidney function, and assess the correlation of PK parameters with pre-treatment metabolites in describing drug response for patients with septic shock. DESIGN Population PK analysis was done with baseline normalized concentrations using nonlinear mixed effect models in the modeling platform Monolix. Various estimates of kidney function, patient demographics, dose received, and organ dysfunction were tested as population covariates. DATA SOURCE We leveraged serum samples and metabolomics data from a phase II trial of L-carnitine in vasopressor-dependent septic shock. Serum was collected at baseline (T0); end-of-infusion (T12); and 24, 48, and 72 h after treatment initiation. PATIENTS AND INTERVENTION Patients were adaptively randomized to receive intravenous L-carnitine (6 grams, 12 grams, or 18 grams) or placebo. MEASUREMENTS AND MAIN RESULTS The final dataset included 542 serum samples from 130 patients randomized to L-carnitine. A two-compartment model with linear elimination and a fixed volume of distribution (17.1 liters) best described the data and served as a base structural model. Kidney function estimates as a covariate on the elimination rate constant (k) reliably improved model fit. Estimated glomerular filtration rate (eGFR), based on the 2021 Chronic Kidney Disease Epidemiology collaboration (CKD-EPI) equation with creatinine and cystatin C, outperformed creatinine clearance (Cockcroft-Gault) and older CKD-EPI equations that use an adjustment for self-identified race. CONCLUSIONS High-dose L-carnitine supplementation is well-described by a two-compartment population PK model in patients with septic shock. Kidney function estimates that leverage cystatin C provided superior model fit. Future investigations into high-dose L-carnitine supplementation should consider baseline metabolic status and dose adjustments based on renal function over a fixed or weight-based dosing paradigm.
Collapse
Affiliation(s)
- Theodore S. Jennaro
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Thomas L. Flott
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. McLellan
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Hall, RG, Liu S, Putnam WC, Kallem R, Gumbo T, Pai MP. Optimizing anidulafungin exposure across a wide adult body size range. Antimicrob Agents Chemother 2023; 67:e0082023. [PMID: 37850741 PMCID: PMC10649049 DOI: 10.1128/aac.00820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Echinocandins like anidulafungin are first-line therapies for candidemia and invasive candidiasis, but their dosing may be suboptimal in obese patients. Our objective was to quantify anidulafungin exposure in a cohort of adults across a wide body size range to test if body size affects anidulafungin pharmacokinetics (PK). We enrolled 20 adults between the ages of 18 and 80 years, with an equal distribution of patients above and below a body mass index of 30 kg/m2. A single 100-mg dose of anidulafungin was administered, followed by intensive sampling over 72 h. Population PK analysis was used to identify and compare covariates of anidulafungin PK parameters. Monte Carlo simulations were performed to compute the probability of target attainment (PTA) based on alternative dosing regimens. Participants (45% males) had a median (range) age of 45 (21-78) years and a median (range) weight of 82.7 (42.4-208.3) kg. The observed median (range) of AUC0-∞ was 106.4 (51.9, 138.4) mg∙h/L. Lean body weight (LBW) and adjusted body weight (AdjBW) were more influential than weight as covariates of anidulafungin PK parameters. The conventional 100 mg daily maintenance is predicted to have a PTA below 90% in adults with an LBW > 55 kg or an AdjBW > 75 kg. A daily maintenance dose of 150-200 mg is predicted in these heavier adults. Anidulafungin AUC0-∞ declines with increasing body size. A higher maintenance dose will increase the PTA compared to the current approach in obese patients.
Collapse
Affiliation(s)
- Ronald G. Hall,
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | - Shuhan Liu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - William C. Putnam
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | - Rajareddy Kallem
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | | | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Pai MP, Sitaruno S, Abdelnabi M. Removing race and body surface area indexation for estimated kidney function based drug dosing: Aminoglycosides as justification of these principles. Pharmacotherapy 2023; 43:35-42. [PMID: 36401789 PMCID: PMC10098929 DOI: 10.1002/phar.2746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/20/2022]
Abstract
STUDY OBJECTIVE The use of race in medicine can contribute to health inequity. Updated equations for estimated glomerular filtration rate (eGFR) without race have been published. Likewise, de-indexation of eGFR to body surface area (BSA) has been recommended by regulatory guidance for drug dosing in renal impairment. Clinical data justifying these recommendations for drug dosing are sparse. We examined the gain or loss of precision in drug dosing with estimated creatinine clearance (eCLcr) and eGFR using serum creatinine (eGFRcr) with and without race and BSA indexation by evaluating the population pharmacokinetics of the aminoglycosides as a classic drug class to probe kidney function. DESIGN Medical records from adult patients treated with gentamicin or tobramycin over a 13-year period were queried. Population pharmacokinetic analyses were performed using a 1-compartment base structural model. Models compared body size descriptors as covariates of the volume of distribution (V). Estimated creatinine clearance and eGFRcr using multiple contemporary equations with and without BSA indexation were tested as covariates of clearance (CL). MAIN RESULTS The final data set included 2968 patients treated with either gentamicin (20.2%) or tobramycin (79.8%). Patients self-identified as Caucasian (82%), African-American (10%), or other. The median [5th, 95th percentile] weight and BSA were 80.5 [49.4, 136] kg and 1.94 [1.48, 2.56] m2 , respectively. Models of eCLcr and eGFRcr without indexation to BSA had a better model fit than eGFRcr indexed to BSA for aminoglycoside CL. The 2021 Chronic Kidney Disease Epidemiology collaboration (CKD-EPI) eGFRcr equation (no race, no BSA indexation) provided a comparable model fit to the 2009 CKD-EPI eGFRcr equation (with race, no BSA indexation) for aminoglycoside CL. CONCLUSIONS Race is not a relevant covariate of aminoglycoside CL. The 2021 CKD-EPI eGFR equation without race and BSA indexation is a better method for gentamicin and tobramycin CL estimation. Confirmation of these results for other drugs can support the harmonization of dosing by kidney function.
Collapse
Affiliation(s)
- Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Sirima Sitaruno
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Mohamed Abdelnabi
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Sitaruno S, Santimaleeworagun W, Pattharachayakul S, DeBacker KC, Vattanavanit V, Binyala W, Pai MP. Comparison of Race and Non-Race Based Equations for Kidney Function Estimation in Critically Ill Thai Patients for Vancomycin Dosing. J Clin Pharmacol 2022; 62:1215-1226. [PMID: 35543614 PMCID: PMC9544596 DOI: 10.1002/jcph.2070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/12/2022]
Abstract
Empiric antibiotic dosing frequently relies on an estimate of kidney function based on age, serum creatinine (SCr), sex, and race (on occasion). New non-Race based estimated glomerular filtration rate (eGFR) equations have been published but their role to support dosing is not known. Here, we report on a population pharmacokinetic model of vancomycin that serves as a useful probe substrate of eGFR in critically ill Thai patients. Data were obtained from medical records during a 10-year period. A nonlinear mixed-effects modeling approach was conducted to estimate vancomycin parameters. Data from 208 critically ill patients (58.2% male and 36.0% septic shock) with 398 vancomycin concentrations were collected. Twenty-three covariates including 12 kidney function estimates were tested and ranked based on the model performance. The median [min, max] age, weight, and SCr was 69 [18, 97] years, 60.0 [27, 120] kg, and 1.53 [0.18, 7.15] mg/dL. The best base model was a one-compartment linear with zero-order input and proportional error model. A Thai specific eGFR equation not indexed to body surface area (BSA) model best predicted vancomycin clearance (CL). The typical value for volume of distribution and CL was 67.5 L and 1.22 L/h, respectively. A loading dose of 2000 mg followed by maintenance dose regimens based on eGFR is suggested. The Thai-GFR not indexed to BSA model best predicts vancomycin CL and dosing in the critically ill Thai population. A 5-10% absolute gain in the vancomycin probability of target attainment is expected with the use of this population specific GFR equation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sirima Sitaruno
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Sutthiporn Pattharachayakul
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kenneth C DeBacker
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Veerapong Vattanavanit
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wanrada Binyala
- Pharmacy Department, Songklanagarind Hospital, Hat Yai, Songkhla, Thailand
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
van der Graaf PH. Diversity in Clinical Pharmacology and Therapeutics. Clin Pharmacol Ther 2021; 110:837-840. [PMID: 34536016 DOI: 10.1002/cpt.2391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
|
6
|
Nicol MR, Cicali EJ, Seo SK, Rao GG. The Complex Roadmap to Infectious Disease Innovation: The Intersection of Bugs, Drugs, and Special Populations. Clin Pharmacol Ther 2021; 109:793-796. [PMID: 33769563 DOI: 10.1002/cpt.2208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Shirley K Seo
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|