1
|
Santamaria F, Roberto M, Buccilli D, Di Civita MA, Giancontieri P, Maltese G, Nicolella F, Torchia A, Scagnoli S, Pisegna S, Barchiesi G, Speranza I, Botticelli A, Santini D. Clinical implications of the Drug-Drug Interaction in Cancer Patients treated with innovative oncological treatments. Crit Rev Oncol Hematol 2024; 200:104405. [PMID: 38838928 DOI: 10.1016/j.critrevonc.2024.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
In the last two-decades, innovative drugs have revolutionized cancer treatments, demonstrating a significant improvement in overall survival. These drugs may present several pharmacokinetics interactions with non-oncological drugs, and vice versa, and, non-oncological drugs can modify oncological treatment outcome both with pharmacokinetic interaction and with an "off-target impact" on the tumor microenvironment or on the peripheral immune response. It's supposed that the presence of a drug-drug interaction (DDI) is associated with an increased risk of reduced anti-tumor effects or severe toxicities. However, clinical evidence that correlate the DDI presence with outcome are few, and results are difficult to compare because of difference in data collection and heterogeneous population. This review reports all the clinical evidence about DDI to provide an easy-to-use guide for DDI management and dose adjustment in solid tumors treated with inhibitors of the cyclin-dependent kinases CDK4-6, Antibody-drug conjugates, Poly ADPribose polymerase inhibitors, androgen-receptor targeted agents, or immunecheckpoints inhibitors.
Collapse
Affiliation(s)
- Fiorenza Santamaria
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Michela Roberto
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy.
| | - Dorelsa Buccilli
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Mattia Alberto Di Civita
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Paola Giancontieri
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Giulia Maltese
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Francesco Nicolella
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Andrea Torchia
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Clinical and Molecular Medicine, Sapienza University of Rome, Italy
| | - Simone Scagnoli
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Simona Pisegna
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Giacomo Barchiesi
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Iolanda Speranza
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Andrea Botticelli
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Daniele Santini
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| |
Collapse
|
2
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
3
|
Zhu Z, Zhu Q. Differences in metabolic transport and resistance mechanisms of Abemaciclib, Palbociclib, and Ribociclib. Front Pharmacol 2023; 14:1212986. [PMID: 37475713 PMCID: PMC10354263 DOI: 10.3389/fphar.2023.1212986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) play a crucial role in cancer treatment, particularly in breast cancer, and their mechanism of drug resistance is a topic of global interest in research. Hence, it is vital to comprehend the distinctions between various CDK4/6i, including their mechanisms of action and resistance mechanisms. This article aims to summarize the metabolic and transport variations as well as the differences in resistance among the three FDA-approved CDK4/6 inhibitors: Abemaciclib, Palbociclib, and Ribociclib. It also aims to discuss how these differences impact the effectiveness and safety of anticancer drugs. It was conducted in March 2023 to search PubMed, Embase, and Web of Science for literature related to this topic. Despite all being CDK4/6i, differences in their metabolism and transport were found, which are related to their chemical structure. Moreover, there are variations in preclinical pharmacology, pharmacokinetics, and clinical safety and efficacy of the different inhibitors. Genetic mutations, drug tolerance, and other factors may influence CDK4/6 resistance mechanisms. Currently, the resistance mechanisms differences of the three drugs remain largely unknown, and there are differences in the resistance mechanisms among them, necessitating further exploration and research.
Collapse
Affiliation(s)
- Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Staniszewska M, Kiełbowski K, Rusińska K, Bakinowska E, Gromowska E, Pawlik A. Targeting cyclin-dependent kinases in rheumatoid arthritis and psoriasis - a review of current evidence. Expert Opin Ther Targets 2023; 27:1097-1113. [PMID: 37982244 DOI: 10.1080/14728222.2023.2285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with synovial proliferation and bone erosion, which leads to the structural and functional impairment of the joints. Immune cells, together with synoviocytes, induce a pro-inflammatory environment and novel treatment agents target inflammatory cytokines. Psoriasis is a chronic immune-mediated skin disease, and several cytokines are considered as typical mediators in the progression of the disease, including IL-23, IL-22, and IL-17, among others. AREA COVERED In this review, we try to evaluate whether cyclin-dependent kinases (CDK), enzymes that regulate cell cycle and transcription of various genes, could become novel therapeutic targets in RA and psoriasis. We present the main results of in vitro and in vivo studies, as well as scarce clinical reports. EXPERT OPINION CDK inhibitors seem promising for treating RA and psoriasis because of their multidirectional effects. CDK inhibitors may affect not only the process of osteoclastogenesis, thereby reducing joint destruction in RA, but also the process of apoptosis of neutrophils and macrophages responsible for the development of inflammation in both RA and psoriasis. However, assessing the efficacy of these drugs in clinical practice requires multi-center, long-term clinical trials evaluating the effectiveness and safety of CDK-blocking therapy in RA and psoriasis.
Collapse
Affiliation(s)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Klaudia Rusińska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Gromowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Wang W, Wu J, Chen K, Wang X, Shao X. Prognostic Parameters of Palbociclib in HR+/HER2- Advanced Breast Cancer: A Narrative Review. Technol Cancer Res Treat 2023; 22:15330338231173504. [PMID: 37186799 DOI: 10.1177/15330338231173504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Recent studies have demonstrated that the combination of Cyclin-Dependent Kinase 4/6 Inhibitor (CDK4/6i) and endocrine therapy (ET) is more effective than ET alone and significantly improves progression-free survival (PFS) and overall survival (OS) in patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor-2 negative (HER2-) breast cancer (BC). Palbociclib is the first CDK4/6i approved for use, and its clinical advantages have been shown. However, 30% of patients will continue to develop secondary drug resistance. Therefore, exploring the parameters that can predict the efficacy of Palbociclib and developing a clinical prediction model is essential for evaluating the prognosis of patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiayi Wu
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Keyu Chen
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaojia Wang
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xiying Shao
- Department of Medical Oncology (Breast Cancer), Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Pharmacokinetic Variability Drives Palbociclib-Induced Neutropenia in Metastatic Breast Cancer Patients: Drug-Drug Interactions Are the Usual Suspects. Pharmaceutics 2022; 14:pharmaceutics14040841. [PMID: 35456675 PMCID: PMC9032884 DOI: 10.3390/pharmaceutics14040841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Palbociclib is a good candidate for therapeutic drug monitoring (TDM) due to its narrow therapeutic range and frequency of toxicities, particularly high-grade neutropenia. In this prospective, bicentric clinical trial, we evaluated the palbociclib exposure−toxicity relationship and determined the relevant sources of palbociclib pharmacokinetic variability, including drug−drug interactions (DDI). We followed 58 patients (mean age: 62.9 years) for 1 year. The geometric median of palbociclib plasma trough concentration (Ctrough) was 74.1 ng/mL. Neutropenia occurred in 70.7% of patients (high grade in 67.2% of patients). High-grade neutropenia occurrence during the first two palbociclib cycles was higher in patients with lower neutrophil count at initiation (p = 0.002). Palbociclib plasma Ctrough was correlated with high-grade neutropenia occurrence during the first two cycles (p = 0.024, OR 5.51). Co-treatment with agents that may interfere with palbociclib PK significantly influenced palbociclib Ctrough (p < 0.05). CYP3A4/P-glycoprotein inhibitors increased by 25% palbociclib Ctrough (p = 0.035), while antacids reduced it by 20% (p = 0.036). However, DDI did not have any significant effect on high-grade neutropenia occurrence (p > 0.05). This study confirms the major role of TDM to manage palbociclib safe use from the first week of treatment, particularly the significant incidence of hematological toxicity. Moreover, this first dedicated prospective study confirmed the importance of characterizing co-treatments to limit the DDI risk with oral-targeted therapies.
Collapse
|