1
|
Jaiprasart P, Hellemans P, Jiao JJ, Dosne AG, De Meulder M, De Zwart L, Brees L, Zhu W. Effect of Carbamazepine on the Pharmacokinetics of Erdafitinib in Healthy Participants. Clin Pharmacol Drug Dev 2024; 13:852-860. [PMID: 38740493 DOI: 10.1002/cpdd.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 05/16/2024]
Abstract
Erdafitinib, a selective and potent oral pan-FGFR inhibitor, is metabolized mainly through CYP2C9 and CYP3A4 enzymes. This phase 1, open-label, single-sequence, drug-drug interaction study evaluated the pharmacokinetics, safety, and tolerability of a single oral dose of erdafitinib alone and when co-administered with steady state oral carbamazepine, a dual inducer of CYP3A4 and CYP2C9, in 13 healthy adult participants (NCT04330248). Compared with erdafitinib administration alone, carbamazepine co-administration decreased total and free maximum plasma concentrations of erdafitinib (Cmax) by 35% (95% CI 30%-39%) and 22% (95% CI 17%-27%), respectively. The areas under the concentration-time curve over the time interval from 0 to 168 hours, to the last quantifiable data point, and to time infinity (AUC168h, AUClast, AUCinf), were markedly decreased for both total erdafitinib (56%-62%) and free erdafitinib (48%-55%). The safety profile of erdafitinib was consistent with previous clinical studies in healthy participants, with no new safety concerns when administered with or without carbamazepine. Co-administration with carbamazepine may reduce the activity of erdafitinib due to reduced exposure. Concomitant use of strong CYP3A4 inducers with erdafitinib should be avoided.
Collapse
Affiliation(s)
- Pharavee Jaiprasart
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, North Wales, PA, USA
| | - Peter Hellemans
- Oncology Research & Development, Janssen Research & Development, Beerse, Belgium
| | - Juhui James Jiao
- Statistics and Decision Science, Janssen Research & Development, Raritan, NJ, USA
| | - Anne-Gaëlle Dosne
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, Beerse, Belgium
| | - Marc De Meulder
- Bioanalytical Discovery & Development Sciences, Janssen Research & Development, Beerse, Belgium
| | - Loeckie De Zwart
- Preclinical Sciences & Translational Safety, Janssen Research & Development, Beerse, Belgium
| | - Laurane Brees
- Clinical Pharmacology Unit, Janssen Research & Development, Merksem, Belgium
| | - Wei Zhu
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, Raritan, NJ, USA
| |
Collapse
|
2
|
Paglialunga S, Benrimoh N, van Haarst A. Innovative Approaches to Optimize Clinical Transporter Drug-Drug Interaction Studies. Pharmaceutics 2024; 16:992. [PMID: 39204337 PMCID: PMC11359485 DOI: 10.3390/pharmaceutics16080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug-drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play.
Collapse
Affiliation(s)
| | - Natacha Benrimoh
- Data Management and Biometrics, Celerion, Montreal, QC H4M 2N8, Canada
| | | |
Collapse
|
3
|
Bercu JP, Ponting DJ, Ripp SL, Dobo KL, Totah RA, Bolleddula J. A Case to Support the Continued Use of Rifampin in Clinical Drug-Drug Interaction Studies. Clin Pharmacol Ther 2024; 116:34-37. [PMID: 38494918 DOI: 10.1002/cpt.3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, California, USA
| | | | - Sharon L Ripp
- Pharmacokinetics, Dynamics & Metabolism, Pfizer Research & Development, Groton, Connecticut, USA
| | - Krista L Dobo
- Drug Safety Research and Development, Pfizer Research & Development, Groton, Connecticut, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Jayaprakasam Bolleddula
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| |
Collapse
|
4
|
Rodriguez-Vera L, Yin X, Almoslem M, Romahn K, Cicali B, Lukacova V, Cristofoletti R, Schmidt S. Comprehensive Physiologically Based Pharmacokinetic Model to Assess Drug-Drug Interactions of Phenytoin. Pharmaceutics 2023; 15:2486. [PMID: 37896246 PMCID: PMC10609929 DOI: 10.3390/pharmaceutics15102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Regulatory agencies worldwide expect that clinical pharmacokinetic drug-drug interactions (DDIs) between an investigational new drug and other drugs should be conducted during drug development as part of an adequate assessment of the drug's safety and efficacy. However, it is neither time nor cost efficient to test all possible DDI scenarios clinically. Phenytoin is classified by the Food and Drug Administration as a strong clinical index inducer of CYP3A4, and a moderate sensitive substrate of CYP2C9. A physiologically based pharmacokinetic (PBPK) platform model was developed using GastroPlus® to assess DDIs with phenytoin acting as the victim (CYP2C9, CYP2C19) or perpetrator (CYP3A4). Pharmacokinetic data were obtained from 15 different studies in healthy subjects. The PBPK model of phenytoin explains the contribution of CYP2C9 and CYP2C19 to the formation of 5-(4'-hydroxyphenyl)-5-phenylhydantoin. Furthermore, it accurately recapitulated phenytoin exposure after single and multiple intravenous and oral doses/formulations ranging from 248 to 900 mg, the dose-dependent nonlinearity and the magnitude of the effect of food on phenytoin pharmacokinetics. Once developed and verified, the model was used to characterize and predict phenytoin DDIs with fluconazole, omeprazole and itraconazole, i.e., simulated/observed DDI AUC ratio ranging from 0.89 to 1.25. This study supports the utility of the PBPK approach in informing drug development.
Collapse
Affiliation(s)
- Leyanis Rodriguez-Vera
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| | - Xuefen Yin
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| | - Mohammed Almoslem
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| | - Karolin Romahn
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| | - Brian Cicali
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| | | | - Rodrigo Cristofoletti
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| | - Stephan Schmidt
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (L.R.-V.); (X.Y.); (M.A.); (K.R.); (B.C.)
| |
Collapse
|
5
|
Tuesuwan B, Vongsutilers V. Current Threat of Nitrosamines in Pharmaceuticals and Scientific Strategies for Risk Mitigation. J Pharm Sci 2023; 112:1192-1209. [PMID: 36739905 DOI: 10.1016/j.xphs.2023.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The current global situation of nitrosamine contamination has expanded from angiotensin-II receptor blockers (ARBs) to wide range of medicines as the risk of contamination via the drug substances, formulation, manufacturing process, and packaging is possible for many drug products. The understanding of chemistry, toxicology, and root causes of nitrosamines are mandatory to effectively evaluate and mitigate the risks associated with the contaminated mutagen. Lessons learnt and scientific findings from previously identified root causes are good examples on how to perform effective risk assessments and establish control strategies. Addressing the risk of nitrosamine contamination in pharmaceuticals requires significant knowledge and considerable resources to collect the necessary information for risk evaluation. Examples of the resources required include a reliable laboratory facility, reference material, highly specific and sensitive instrumentation able handle trace levels of contamination, data management, and the most limited resource - time. Therefore, the supporting tools to assist with risk assessment e.g., shared databases for drug and excipients in concern, screening models for the determination of nitrosamine formation potential, and an in silico model to help with toxicity estimation, have proven to be beneficial to tackle the risk and concern of nitrosamine contamination in pharmaceuticals.
Collapse
Affiliation(s)
- Bodin Tuesuwan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorasit Vongsutilers
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Paglialunga S, van Haarst A. The Impact of N-nitrosamine Impurities on Clinical Drug Development. J Pharm Sci 2023; 112:1183-1191. [PMID: 36706834 DOI: 10.1016/j.xphs.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Over the past few years, an increasing number of commercially available drugs have been reported to contain N-nitrosamine impurities above acceptable intake limits. Consequent interruption or discontinuation of the manufacturing and distribution of several marketed drugs has culminated into shortages of marketed drugs, including the antidiabetic drug metformin and the potentially life-saving drug rifampin for the treatment of tuberculosis. Alarmingly, the clinical development of new investigational products has been complicated as well by the presence of N-nitrosamine impurities in batches of marketed drug. In particular, rifampin is a key clinical index drug employed in drug-drug interaction (DDI) studies, and as a result of nitrosamine impurities regulatory bodies no longer accept the administration of rifampin in DDI studies involving healthy subjects. Drug developers are now forced to look at alternative approaches for commonly employed perpetrators, which will be discussed in this review.
Collapse
|
7
|
Bolleddula J, Gopalakrishnan S, Hu P, Dong J, Venkatakrishnan K. Alternatives to rifampicin: A review and perspectives on the choice of strong CYP3A inducers for clinical drug-drug interaction studies. Clin Transl Sci 2022; 15:2075-2095. [PMID: 35722783 PMCID: PMC9468573 DOI: 10.1111/cts.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosamine (NA) impurities are considered genotoxic and have gained attention due to the recall of several marketed drug products associated with higher-than-permitted limits of these impurities. Rifampicin is an index inducer of multiple cytochrome P450s (CYPs) including CYP2B6, 2C8, 2C9, 2C19, and 3A4/5 and an inhibitor of OATP1B transporters (single dose). Hence, rifampicin is used extensively in clinical studies to assess drug-drug interactions (DDIs). Despite NA impurities being reported in rifampicin and rifapentine above the acceptable limits, these critical anti-infective drugs are available for therapeutic use considering their benefit-risk profile. Reports of NA impurities in rifampicin products have created uncertainty around using rifampicin in clinical DDI studies, especially in healthy volunteers. Hence, a systematic investigation through a literature search was performed to determine possible alternative index inducer(s) to rifampicin. The available strong CYP3A inducers were selected from the University of Washington DDI Database and their in vivo DDI potential assessed using the data from clinical DDI studies with sensitive CYP3A substrates. To propose potential alternative CYP3A inducers, factors including lack of genotoxic potential, adequate safety, feasibility of multiple dose administration to healthy volunteers, and robust in vivo evidence of induction of CYP3A were considered. Based on the qualifying criteria, carbamazepine, phenytoin, and lumacaftor were identified to be the most promising alternatives to rifampicin for conducting CYP3A induction DDI studies. Strengths and limitations of the proposed alternative CYP3A inducers, the magnitude of in vivo CYP3A induction, appropriate study designs for each alternative inducer, and future perspectives are presented in this paper.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | | | - Ping Hu
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Jennifer Dong
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Karthik Venkatakrishnan
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| |
Collapse
|