1
|
Fashe MM, Tiley JB, Lee CR. Mechanisms of altered hepatic drug disposition during pregnancy: small molecules. Expert Opin Drug Metab Toxicol 2025:1-18. [PMID: 39992297 DOI: 10.1080/17425255.2025.2470792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Pregnancy alters the systemic exposure and clearance of many hepatically cleared drugs that are commonly used by obstetric patients. Understanding the molecular mechanisms underlying the changes in factors that affect hepatic drug clearance (blood flow, protein binding, and intrinsic clearance) is essential to more precisely predict systemic drug exposure and dose requirements in obstetric patients. AREAS COVERED This review (1) summarizes the anatomic, physiologic, and biochemical changes in maternal hepatic, cardiovascular, endocrine, and renal systems relevant to hepatic drug clearance and (2) reviews the molecular mechanisms underlying the altered hepatic metabolism and intrinsic clearance of drugs during pregnancy via a comprehensive PubMed search. It also identifies knowledge gaps in the molecular mechanisms and factors that modulate hepatic drug clearance during pregnancy. EXPERT OPINION Pharmacokinetic studies have shown that pregnancy alters systemic exposure, protein binding, and clearance of many drugs during gestation in part due to pregnancy-associated decreases in plasma albumin, increases in organ blood flow, and changes in the activity of drug-metabolizing enzymes (DMEs) and transporters. The changes in the activity of certain DMEs and transporters during pregnancy are likely driven by hormonal-changes that inhibit their activity or alter the expression of these proteins through activation of transcription factors.
Collapse
Affiliation(s)
- Muluneh M Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline B Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Gu H, Sechaud R, Hanna I, Pelis R, Einolf HJ. Physiologically based pharmacokinetic modeling of midostaurin and metabolites at steady-state to bridge drug interaction scenarios in lieu of clinical trials. Drug Metab Dispos 2025; 53:100036. [PMID: 39985984 DOI: 10.1016/j.dmd.2025.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/21/2024] [Indexed: 02/24/2025] Open
Abstract
Midostaurin and its active metabolites are substrates, mixed inhibitors/inducers of cytochrome P450 (CYP)3A4. The main objective of this study was to develop/refine a physiologically based pharmacokinetic (PBPK) model that incorporated recent clinical drug-drug interaction (DDI) data with midazolam after multiple dosing, to qualify the pharmacokinetic (PK) model simulations of midostaurin and its metabolites, and to apply it to predict untested clinical DDI scenarios with potential comedications. In this study, Simcyp PBPK model of midostaurin and its 2 metabolites was refined from a previously published model associated with endogenous biomarker 4β-hydroxycholesterol data through further optimization of CYP3A4 inhibition/induction potency and was qualified to simulate midostaurin steady-state PK. The incorporation of these parameters enabled DDI predictions of high midostaurin doses on the PK of midazolam and oral contraceptives containing ethinyl estradiol. Additionally, scaling factors for in vitro breast cancer resistance protein and the organic anion transporting polypeptide (OATP1B) inhibition were applied to account for the observed single-dose DDI with rosuvastatin and further extrapolated to predict steady-state DDI with other OATP1B drug substrates. The overall prediction results showed minimal impact of midostaurin at high doses on CYP3A substrates or an effect on the exposure of OATP1B substrates. In summary, the midostaurin PBPK model was retrospectively refined, requalified, and used to simulate the steady-state perpetrator DDI of midostaurin and its metabolites. This PBPK modeling approach and the resulting model predictions were implemented into the midostaurin product label (up to 100 mg twice a day) without the need for confirmatory clinical studies. SIGNIFICANCE STATEMENT: The manuscript describes how a midostaurin PBPK model was updated, verified, and applied to untested scenarios by a predict-learn-confirm cycle as new clinical data become available. It also provides a learning experience of prospective prediction by utilizing endogenous biomarker 4β-hydroxycholesterol to evaluate a complex CYP3A4-mediated drug interaction.
Collapse
Affiliation(s)
- Helen Gu
- Department of Pharmacokinetic Sciences, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey.
| | - Romain Sechaud
- Department of Pharmacokinetic Sciences, Novartis Pharma AG - Biomedical Research, Basel, Switzerland
| | - Imad Hanna
- Department of Pharmacokinetic Sciences, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Ryan Pelis
- Department of Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Heidi J Einolf
- Department of Pharmacokinetic Sciences, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| |
Collapse
|
3
|
Toja-Camba FJ, Vidal-Millares M, Durán-Maseda MJ, Hermelo-Vidal G, Carracedo Á, Maroñas O, Ramudo-Cela L, Zarra-Ferro I, Fernández-Ferreiro A, Mondelo-García C. Influence of ABCB1 polymorphisms on aripiprazole and dehydroaripiprazole plasma concentrations. Sci Rep 2025; 15:1521. [PMID: 39789135 PMCID: PMC11717999 DOI: 10.1038/s41598-024-84192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition. The present study aims to determine how the different variants of the three most prevalent SNPs of the ABCB1 gene affect plasma concentrations of ARI, of its active metabolite dehydroaripiprazole (DHA) and ARI/DHA ratio in patients under AOM treatment. The metabolizing state of the two main aripiprazole metabolizing enzymes (CYP2D6 and CYP3A4) were considered to specifically study the effect of P-gp on plasma concentrations of the parent compound and its active metabolite. The study found a clear relationship between the genotypes found for the different ABCB1 SNPs and the ARI/DHA ratio. Specifically, patients with GG genotype in G2677T have almost twice the ratio compared to TT genotype. Similarly, this increase is also found in C3435T with 1.4-fold and in C1236T with 1.6-fold for the same genotypes. Regarding haplotypes, significant differences were obtained between CC-GG-CC and TT-TT-TT patients, with an 87.9% higher ratio in patients with the CC-GG-CC haplotype. There was a clear trend towards lower ARI concentrations and higher DHA concentrations when the presence of mutated T alleles increases. The ABCB1 gene could be a good partner along with CYP2D6 and CYP3A4 genotyping in conjunction with monitoring ARI plasma concentrations.
Collapse
Affiliation(s)
- Francisco José Toja-Camba
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain
- FarmaCHUSLab Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María Vidal-Millares
- Psychiatry Department, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Durán-Maseda
- Psychiatry Department, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonzalo Hermelo-Vidal
- FarmaCHUSLab Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Genetics Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Foundation of Health Research Institute of Santiago de Compostela (FIDIS), SERGAS, Santiago de Compostela, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), Carlos III Health Institute, Madrid, Spain
| | - Olalla Maroñas
- Galician Foundation of Genomic Medicine, Foundation of Health Research Institute of Santiago de Compostela (FIDIS), SERGAS, Santiago de Compostela, Spain
- Centre for Biomedical Network Research On Rare Diseases (CIBERER), Carlos III Health Institute, Madrid, Spain
- Pharmacogenomics and Drug Discovery (GenDeM), Foundation of Health Research Institute of Santiago de Compostela (FIDIS), Galicia, Santiago de Compostela, Spain
| | - Luis Ramudo-Cela
- Pharmacy Department, University Clinical Hospital A Coruña (CHUAC), A Coruña, Spain
- Hospital Pharmacy Research Group, Health Research Institute of A Coruña (INIBIC), A Coruña, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain
- FarmaCHUSLab Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain.
- FarmaCHUSLab Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain.
- FarmaCHUSLab Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Gülave B, Lesmana A, de Lange EC, van Hasselt JGC. Do P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier impact morphine brain distribution? J Pharmacokinet Pharmacodyn 2025; 52:11. [PMID: 39776000 PMCID: PMC11706904 DOI: 10.1007/s10928-024-09957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure. Here, we used a physiologically-based pharmacokinetic (PBPK) model-based approach to evaluate the potential impact of DDIs on BBB transport of morphine by clinically relevant P-gp inhibitor drugs.The LeiCNS-PK3.0 PBPK model was used to simulate morphine distribution at the brain extracellular fluid (brainECF) for different clinical intravenous dosing regimens of morphine, alone or in combination with a P-gp inhibitor. We included 34 commonly used P-gp inhibitor drugs, with inhibitory constants and expected clinical P-gp inhibitor concentrations derived from literature. The DDI impact was evaluated by the change in brainECF exposure for morphine alone or in combination with different inhibitors. Our analysis demonstrated that P-gp inhibitors had a negligible effect on morphine brainECF exposure in the majority of simulated population, caused by low P-gp inhibition. Sensitivity analyses showed neither major effects of increasing the inhibitory concentration nor changing the inhibitory constant on morphine brainECF exposure. In conclusion, P-gp mediated DDIs on morphine BBB transport for the evaluated P-gp inhibitors are unlikely to induce meaningful changes in clinically relevant morphine CNS exposure. The developed CNS PBPK modeling approach provides a general approach for evaluating BBB transporter DDIs in humans.
Collapse
Affiliation(s)
- Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Ariel Lesmana
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Elizabeth Cm de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|
5
|
Watari R, Tamura N, Yoshida S, Kido Y, Matsuzaki T. Minimal Involvement of P-gp and BCRP in Oral Absorption of Ensitrelvir, An Oral SARS-CoV-2 3C-like Protease Inhibitor, in a Non-Clinical Investigation. J Pharm Sci 2024; 113:2871-2878. [PMID: 38885812 DOI: 10.1016/j.xphs.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are important transporters causing drug-drug interaction (DDI). Here, we investigated the involvement of P-gp and BCRP in the oral absorption of ensitrelvir in non-clinical studies and estimated the DDI risk mediated by P-gp and BCRP inhibition in humans. Although ensitrelvir is an in vitro P-gp and BCRP substrate, it demonstrated high bioavailability in rats and monkeys after oral administration. Plasma exposures of ensitrelvir following oral administration were comparable in wild type (WT) and Bcrp (-/-) mice. On the other hand, the area under the plasma concentration-time curve (AUC) ratio of ensitrelvir in the Mdr1a/1b (-/-) mice to the WT mice was 1.92, indicating that P-gp, but not BCRP, was involved in the oral absorption of ensitrelvir. Based on our previous retrospective analyses, such a low AUC ratio (<3) in the Mdr1a/1b (-/-) mice indicates a minimal impact of P-gp on the oral absorption in humans. In conclusion, our studies demonstrate that the involvement of both P-gp and BCRP in the oral absorption of ensitrelvir is minimal, and suggest that ensitrelvir has a low risk for DDIs mediated by P-gp and BCRP inhibition in humans.
Collapse
Affiliation(s)
- Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd..
| | - Naomi Tamura
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | - Shinpei Yoshida
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | - Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | | |
Collapse
|
6
|
Shen H, Huo R, Zhang Y, Wang L, Tong N, Chen W, Paris AJ, Mensah K, Chen M, Xue Y, Li W, Sinz M. A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants. J Pharmacol Exp Ther 2024; 390:162-173. [PMID: 38296646 DOI: 10.1124/jpet.123.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC 50 0.40 μM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and C max of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and C max values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Nian Tong
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Weiqi Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Andrew J Paris
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Kofi Mensah
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Min Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Wenying Li
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| |
Collapse
|
7
|
Galetin A, Brouwer KLR, Tweedie D, Yoshida K, Sjöstedt N, Aleksunes L, Chu X, Evers R, Hafey MJ, Lai Y, Matsson P, Riselli A, Shen H, Sparreboom A, Varma MVS, Yang J, Yang X, Yee SW, Zamek-Gliszczynski MJ, Zhang L, Giacomini KM. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov 2024; 23:255-280. [PMID: 38267543 PMCID: PMC11464068 DOI: 10.1038/s41573-023-00877-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lauren Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Michael J Hafey
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Pär Matsson
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hong Shen
- Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, CT, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Hernández-Lozano I, Leterrier S, Mairinger S, Stanek J, Zacher AS, Breyer L, Hacker M, Zeitlinger M, Pahnke J, Tournier N, Wanek T, Langer O. Performance and Sensitivity of [ 99mTc]Tc-sestamibi Compared with Positron Emission Tomography Radiotracers to Measure P-glycoprotein Function in the Kidneys and Liver. Mol Pharm 2024; 21:932-943. [PMID: 38225758 PMCID: PMC10848257 DOI: 10.1021/acs.molpharmaceut.3c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
P-glycoprotein (P-gp, encoded in humans by the ABCB1 gene and in rodents by the Abcb1a/b genes) is a membrane transporter that can restrict the intestinal absorption and tissue distribution of many drugs and may also contribute to renal and hepatobiliary drug excretion. The aim of this study was to compare the performance and sensitivity of currently available radiolabeled P-gp substrates for positron emission tomography (PET) with the single-photon emission computed tomography (SPECT) radiotracer [99mTc]Tc-sestamibi for measuring the P-gp function in the kidneys and liver. Wild-type, heterozygous (Abcb1a/b(+/-)), and homozygous (Abcb1a/b(-/-)) Abcb1a/b knockout mice were used as models of different P-gp abundance in excretory organs. Animals underwent either dynamic PET scans after intravenous injection of [11C]N-desmethyl-loperamide, (R)-[11C]verapamil, or [11C]metoclopramide or consecutive static SPECT scans after intravenous injection of [99mTc]Tc-sestamibi. P-gp in the kidneys and liver of the mouse models was analyzed with immunofluorescence labeling and Western blotting. In the kidneys, Abcb1a/b() mice had intermediate P-gp abundance compared with wild-type and Abcb1a/b(-/-) mice. Among the four tested radiotracers, renal clearance of radioactivity (CLurine,kidney) was significantly reduced (-83%) in Abcb1a/b(-/-) mice only for [99mTc]Tc-sestamibi. Biliary clearance of radioactivity (CLbile,liver) was significantly reduced in Abcb1a/b(-/-) mice for [11C]N-desmethyl-loperamide (-47%), [11C]metoclopramide (-25%), and [99mTc]Tc-sestamibi (-79%). However, in Abcb1a/b(+/-) mice, CLbile,liver was significantly reduced (-47%) only for [99mTc]Tc-sestamibi. Among the tested radiotracers, [99mTc]Tc-sestamibi performed best in measuring the P-gp function in the kidneys and liver. Owing to its widespread clinical availability, [99mTc]Tc-sestamibi represents a promising probe substrate to assess systemic P-gp-mediated drug-drug interactions and to measure renal and hepatic P-gp function under different (patho-)physiological conditions.
Collapse
Affiliation(s)
| | - Sarah Leterrier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm,
Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna S. Zacher
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lara Breyer
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Jens Pahnke
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab, University
of Oslo (UiO) and Oslo University Hospital (OUS), 0372 Oslo, Norway
- Lübeck
Institute of Experimental Dermatology (LIED), Pahnke Lab, University of Lübeck and University Medical
Center Schleswig-Holstein, 23538 Lübeck, Germany
- Department
of Pharmacology, Faculty of Medicine, University
of Latvia, 1004 Ri̅ga, Latvia
- Department
of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm,
Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Thomas Wanek
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Verma A, Chauhan A, Awasthi A. Transcending Molecules: Paving the Way from Lab to Life in Drug Transport Innovation. Curr Drug Targets 2024; 25:445-448. [PMID: 38639289 DOI: 10.2174/0113894501305312240414073623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Abhishek Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Abhishek Chauhan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
10
|
Chu J, Panfen E, Wang L, Marino A, Chen XQ, Fancher RM, Landage R, Patil O, Desai SD, Shah D, Xue Y, Sinz M, Shen H. Evaluation of Encequidar as An Intestinal P-gp and BCRP Specific Inhibitor to Assess the Role of Intestinal P-gp and BCRP in Drug-Drug Interactions. Pharm Res 2023; 40:2567-2584. [PMID: 37523014 DOI: 10.1007/s11095-023-03563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.
Collapse
Affiliation(s)
- Jessica Chu
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Erika Panfen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Linna Wang
- Nonclinical Disposition & Bioanalysis, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Anthony Marino
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Xue-Qing Chen
- Discovery Pharmaceutics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - R Marcus Fancher
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Raviraj Landage
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Omprakash Patil
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Salil Dileep Desai
- Pharmaceutical Candidate Optimization, Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, 560099, India
| | - Devang Shah
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Yongjun Xue
- Nonclinical Disposition & Bioanalysis, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, 08543, USA.
| |
Collapse
|
11
|
Kim H, Song TJ, Yee J, Kim DH, Park J, Gwak HS. ABCG2 Gene Polymorphisms May Affect the Bleeding Risk in Patients on Apixaban and Rivaroxaban. Drug Des Devel Ther 2023; 17:2513-2522. [PMID: 37641689 PMCID: PMC10460569 DOI: 10.2147/dddt.s417096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose Direct oral anticoagulants (DOACs) are widely used for stroke prevention in atrial fibrillation. However, they have a bleeding complication. Breast cancer resistance protein, encoded by ABCG2, is known to be an efflux transporter of apixaban and rivaroxaban among DOACs. This study aimed to investigate the association between gene variants and bleeding complications during treatment with ABCG2 substrates (apixaban and rivaroxaban). Patients and Methods Patients treated with apixaban and rivaroxaban were enrolled from June 2018 to December 2021. Five single nucleotide polymorphisms (SNPs) of ABCG2 were selected. Previously studied genes (ABCB1, CYP3A4, and CYP3A5) were further analyzed as possible confounders. Finally, a total of 16 SNPs were examined in this case-control study. The outcome was defined as major bleeding and clinically relevant non-major bleeding. Two models were constructed using the multivariable analysis. Results Among 293 patients, 64 were cases. The mean age of the patients was 68.8 years, and males comprised 62.5% of the study population. Model I revealed that a history of bleeding, concurrent use of proton pump inhibitor (PPI), ABCG2 rs3114018, and ABCB1 rs1045642 were significantly associated with bleeding complications; the AORs (95% CI) were 6.209 (2.210-17.442), 2.385 (1.064-5.349), 2.188 (1.156-4.142), and 3.243 (1.371-7.671), respectively. Model II showed that modified HAS-BLED score, concurrent use of PPI, ABCG2 rs3114018, and ABCB1 rs1045642 were significantly associated with bleeding complications. Conclusion The modified HAS-BLED score, a history of bleeding, concurrent use of PPI, ABCG2 rs3114018, and ABCB1 rs1045642 were significantly associated with the risk of bleeding complications in patients on apixaban and rivaroxaban, after adjusting for other confounders. These findings can be used to develop individualized treatment strategies for patients taking apixaban and rivaroxaban.
Collapse
Affiliation(s)
- Hamin Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Dong-Hyeok Kim
- Department of Cardiology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Junbeom Park
- Department of Cardiology, Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
12
|
Yao X, Bunt C, Liu M, Quek SY, Shaw J, Cornish J, Wen J. Enhanced Cellular Uptake and Transport of Bovine Lactoferrin Using Pectin- and Chitosan-Modified Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:2168. [PMID: 37631382 PMCID: PMC10457979 DOI: 10.3390/pharmaceutics15082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
AIM The aim of this project is to use pectin- and chitosan-modified solid lipid nanoparticles for bovine lactoferrin to enhance its cellular uptake and transport. METHODS Solid lipid particles containing bovine lactoferrin (bLf) were formulated through the solvent evaporation technique, incorporating stearic acid along with either chitosan or pectin modification. bLf cellular uptake and transport were evaluated in vitro using the human adenocarcinoma cell line Caco-2 cell model. RESULTS AND DISCUSSION The bLf-loaded SLPs showed no significant effect on cytotoxicity and did not induce apoptosis within the eight-hour investigation. The use of confocal laser scanning microscopy confirmed that bLf follows the receptor-mediated endocytosis, whereas the primary mechanism for the cellular uptake of SLPs was endocytosis. The bLf-loaded SLPs had significantly more cellular uptake compared to bLf alone, and it was observed that this impact varied based on the time, temperature, and concentration. Verapamil and EDTA were determined to raise the apparent permeability coefficients (App) of bLf and bLf-loaded SLPs. CONCLUSION This occurred because they hindered efflux by interacting with P-glycoproteins and had a penetration-enhancing influence. These findings propose the possibility of an additional absorption mechanism for SLPs, potentially involving active transportation facilitated by the P-glycoprotein transporter in Caco-2 cells. These results suggest that SLPs have the potential to be applied as effective carriers to improve the oral bioavailability of proteins and peptides.
Collapse
Affiliation(s)
- Xudong Yao
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| | - Craig Bunt
- Department of Food Science, Otago University, Dunedin 9054, New Zealand;
| | - Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| | - Siew-Young Quek
- Chemical Science, The University of Auckland, Auckland 1142, New Zealand;
| | - John Shaw
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| | - Jillian Cornish
- School of Medicine, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand (M.L.); (J.S.)
| |
Collapse
|
13
|
Zhang Y, Shipkova PA, Warrack BM, Nelson DM, Wang L, Huo R, Chen J, Panfen E, Chen XQ, Fancher RM, Ruan Q, Christopher LJ, Xue Y, Sinz M, Shen H. Metabolomic Profiling and Drug Interaction Characterization Reveal Riboflavin As a Breast Cancer Resistance Protein-Specific Endogenous Biomarker That Demonstrates Prediction of Transporter Activity In Vivo. Drug Metab Dispos 2023; 51:851-861. [PMID: 37055191 DOI: 10.1124/dmd.123.001284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Advancement of endogenous biomarkers for drug transporters as a tool for assessing drug-drug interactions (DDIs) depends on initial identification of biomarker candidates and relies heavily on biomarker validation and its response to reference inhibitors in vivo. To identify endogenous biomarkers of breast cancer resistance protein (BCRP), we applied metabolomic approaches to profile plasma from Bcrp-/-, multidrug resistance protein (Mdr)1a/1b-/-, and Bcrp/Mdr1a/1b-/- mice. Approximately 130 metabolites were significantly altered in Bcrp and P-glycoprotein (P-gp) knockout mice, indicating numerous metabolite-transporter interactions. We focused on BCRP-specific substrates and identified riboflavin, which was significantly elevated in the plasma of Bcrp single- and Bcrp/P-gp double- but not P-gp single-knockout mice. Dual BCRP/P-gp inhibitor elacridar caused a dose-dependent increase of the area under the plasma concentration-time curve (AUC) of riboflavin in mice (1.51- and 1.93-fold increases by 30 and 150 mg/kg elacridar, respectively). In three cynomolgus monkeys, we observed approximately 1.7-fold increases in the riboflavin concentrations caused by ML753286 (10 mg/kg), which correlated well with the increase of sulfasalazine, a known BCRP probe in monkeys. However, the BCRP inhibitor had no effect on isobutyryl carnitine, arginine, or 2-arachidonoyl glycerol levels. Additionally, clinical studies on healthy volunteers indicated low intrasubject and intermeal variability of plasma riboflavin concentrations. In vitro experiments using membrane vesicles demonstrated riboflavin as a select substrate of monkey and human BCRP over P-gp. Collectively, this proof-of-principle study indicates that riboflavin is a suitable endogenous probe for BCRP activity in mice and monkeys and that future investigation of riboflavin as a blood-based biomarker of human BCRP is warranted. SIGNIFICANCE STATEMENT: Our results identified riboflavin as an endogenous biomarker candidate of BCRP. Its selectivity, sensitivity, and predictivity regarding BCRP inhibition have been explored. The findings of this study highlight riboflavin as an informative BCRP plasma biomarker in animal models. The utility of this biomarker requires further validation by evaluating the effects of BCRP inhibitors of different potencies on riboflavin plasma concentrations in humans. Ultimately, riboflavin may shed light on the risk assessment of BCRP DDIs in early clinical trials.
Collapse
Affiliation(s)
- Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Petia A Shipkova
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Bethanne M Warrack
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - David M Nelson
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Jian Chen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Erika Panfen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Xue-Qing Chen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - R Marcus Fancher
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Qian Ruan
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Lisa J Christopher
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| |
Collapse
|
14
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
15
|
Łapczuk-Romańska J, Droździk M, Oswald S, Droździk M. Kidney Drug Transporters in Pharmacotherapy. Int J Mol Sci 2023; 24:ijms24032856. [PMID: 36769175 PMCID: PMC9917665 DOI: 10.3390/ijms24032856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug-drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review.
Collapse
Affiliation(s)
- Joanna Łapczuk-Romańska
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | - Maria Droździk
- Medical Faculty, Medical University of Lodz, Tadeusza Kościuszki 4, 90-419 Lodz, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany
| | - Marek Droździk
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
16
|
Translatability of in vitro Inhibition Potency to in vivo P-Glycoprotein Mediated Drug Interaction Risk. J Pharm Sci 2023; 112:1715-1723. [PMID: 36682487 DOI: 10.1016/j.xphs.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
P-glycoprotein (P-gp) may limit oral drug absorption of substrate drugs due to intestinal efflux. Therefore, regulatory agencies require investigation of new chemical entities as possible inhibitors of P-gp in vitro. Unfortunately, inter-laboratory and inter-assay variability have hindered the translatability of in vitro P-gp inhibition data to predict clinical drug interaction risk. The current study was designed to evaluate the impact of potential IC50 discrepancies between two commonly utilized assays, i.e., bi-directional Madin-Darby Canine Kidney-MDR1 cell-based and MDR1 membrane vesicle-based assays. When comparing vesicle- to cell-based IC50 values (n = 28 inhibitors), non-P-gp substrates presented good correlation between assay formats, whereas IC50s of P-gp substrates were similar or lower in the vesicle assays. The IC50s obtained with a cell line expressing relatively low P-gp aligned more closely to those obtained from the vesicle assay, but passive permeability of the inhibitors did not appear to influence the correlation of IC50s, suggesting that efflux activity reduces intracellular inhibitor concentrations. IC50s obtained between two independent laboratories using the same assay type showed good correlation. Using the G-value (i.e., ratio of estimated gut concentration-to-inhibition potency) >10 cutoff recommended by regulatory agencies resulted in minimal differences in predictive performance, suggesting this cutoff is appropriate for either assay format.
Collapse
|
17
|
Säll C, Argikar U, Fonseca K, Hilgendorf C, Lopes F, Riedel J, Schiller H, Sonesson A, Umehara K, Wang K. Industry Perspective on Therapeutic Peptide Drug-Drug Interaction Assessments During Drug Development: A European Federation of Pharmaceutical Industries and Associations White Paper. Clin Pharmacol Ther 2023; 113:1199-1216. [PMID: 36633114 DOI: 10.1002/cpt.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Drug-drug interaction (DDI) assessments are well defined in health authority guidelines for small molecule drugs, and US Food and Drug Administration (FDA) draft guidance is now available for therapeutic proteins. However, there are currently no regulatory guidelines outlining DDI assessments for therapeutic peptides, which poses significant uncertainty and challenges during drug development for this heterogenous class of molecules. A cross-industry peptide DDI working group consisting of experts from 10 leading companies was formed under the sponsorship of the European Federation of Pharmaceutical Industries and Associations. We aimed to capture the range of DDI studies undertaken for peptide drugs by (i) anonymously surveying relevant companies involved in peptide drug development to better understand DDI study type/timing currently performed and (ii) compiling a database containing in vitro / clinical DDI data from submission packages for recently approved peptide drugs. Our analyses highlight significant gaps and uncertainty in the field. For example, the reported timing of in vitro peptide DDI studies, if performed, vary substantially across responding companies from early research to phase III. Nearly all in vitro cytochrome P450 / transporter inhibition studies reported in the survey were negative. For the few positive hits reported, no clinical follow-up studies were performed, questioning the clinical relevance of these findings. Furthermore, available submission packages reveal DDI likelihood is low for peptides >2 kDa, making it reasonable to adopt a risk-based approach during drug development for larger peptides. By benchmarking the landscape of peptide DDI activities across the industry, we set the stage for future discussions with health authorities on harmonizing peptide DDI approaches.
Collapse
Affiliation(s)
- Carolina Säll
- Development Absorption, Distribution, Metabolism, and Excretion, Novo Nordisk A/S, Måløv, Denmark
| | - Upendra Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Kari Fonseca
- Medicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Constanze Hilgendorf
- Drug Metabolism and Pharmacokinetics, Early Research and Development Cardiovascular Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Filipe Lopes
- Early Development Absorption, Distribution, Metabolism, and Excretion, Pharvaris GmbH, Zug, Switzerland
| | - Jens Riedel
- Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany
| | - Hilmar Schiller
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anders Sonesson
- Global Drug Metabolism and Pharmacokinetics, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Kai Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, San Diego, California, USA
| |
Collapse
|
18
|
Mealey KL, Owens JG, Freeman E. Canine and feline P-glycoprotein deficiency: What we know and where we need to go. J Vet Pharmacol Ther 2023; 46:1-16. [PMID: 36326478 PMCID: PMC10092536 DOI: 10.1111/jvp.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
In 2001 the molecular genetic basis of so-called "ivermectin sensitivity" in herding breed dogs was determined to be a P-glycoprotein deficiency caused by a genetic variant of the MDR1 (ABCB1) gene often called "the MDR1 mutation." We have learned a great deal about P-glycoprotein's role in drug disposition since that discovery, namely that P-glycoprotein transports many more drugs than just macrocyclic lactones that P-glycoprotein mediated drug transport is present in more places than just the blood brain barrier, that some cats have a genetic variant of MDR1 that results in P-glycoprotein deficiency, that P-glycoprotein dysfunction can occur as a result of drug-drug interactions in any dog or cat, and that the concept of P-glycoprotein "inhibitors" versus P-glycoprotein substrates is somewhat arbitrary and artificial. This paper will review these discoveries and discuss how they impact drug selection and dosing in dogs and cats with genetically mediated P-glycoprotein deficiency or P-glycoprotein dysfunction resulting from drug-drug interactions.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
19
|
Gomari MM, Abkhiz S, Pour TG, Lotfi E, Rostami N, Monfared FN, Ghobari B, Mosavi M, Alipour B, Dokholyan NV. Peptidomimetics in cancer targeting. Mol Med 2022; 28:146. [PMID: 36476230 PMCID: PMC9730693 DOI: 10.1186/s10020-022-00577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Abkhiz
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantab Pour
- grid.411746.10000 0004 4911 7066Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Lotfi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rostami
- grid.411425.70000 0004 0417 7516Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Fatemeh Nafe Monfared
- grid.411705.60000 0001 0166 0922Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ghobari
- grid.412831.d0000 0001 1172 3536Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mona Mosavi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behruz Alipour
- grid.411705.60000 0001 0166 0922Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikolay V. Dokholyan
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA USA
| |
Collapse
|
20
|
Chen W, Shao Y, Peng X, Liang B, Xu J, Xing D. Review of preclinical data of PF-07304814 and its active metabolite derivatives against SARS-CoV-2 infection. Front Pharmacol 2022; 13:1035969. [PMID: 36438815 PMCID: PMC9691842 DOI: 10.3389/fphar.2022.1035969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Main protease (Mpro) is a superior target for anti-SARS-COV-2 drugs. PF-07304814 is a phosphate ester prodrug of PF-00835231 that is rapidly metabolized into the active metabolite PF-00835231 by alkaline phosphatase (ALP) and then suppresses SARS-CoV-2 replication by inhibiting Mpro. PF-07304814 increased the bioavailability of PF-00835231 by enhancing plasma protein binding (PPB). P-glycoprotein (P-gp) inhibitors and cytochrome P450 3A (CYP3A) inhibitors increased the efficacy of PF-00835231 by suppressing its efflux from target cells and metabolism, respectively. The life cycle of SARS-CoV-2 is approximately 4 h. The mechanisms and efficacy outcomes of PF-00835231 occur simultaneously. PF-00835231 can inhibit not only cell infection (such as Vero E6, 293T, Huh-7.5, HeLa+angiotensin-converting enzyme 2 (ACE2), A549+ACE2, and MRC-5) but also the human respiratory epithelial organ model and animal model infection. PF-07304814 exhibits a short terminal elimination half-life and is cleared primarily through renal elimination. There were no significant adverse effects of PF-07304814 administration in rats. Therefore, PF-07304814 exhibits good tolerability, pharmacology, pharmacodynamics, pharmacokinetics, and safety in preclinical trials. However, the Phase 1 data of PF-07304814 were not released. The Phase 2/3 trial of PF-07304814 was also suspended. Interestingly, the antiviral activities of PF-00835231 derivatives (compounds 5–22) are higher than, similar to, or slightly weaker than those of PF-00835231. In particular, compound 22 exhibited the highest potency and had good safety and stability. However, the low solubility of compound 22 limits its clinical application. Prodrugs, nanotechnology and salt form drugs may solve this problem. In this review, we focus on the preclinical data of PF-07304814 and its active metabolite derivatives to hopefully provide knowledge for researchers to study SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Xiaojin Peng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Jiazhen Xu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Jiazhen Xu, ; Dongming Xing,
| |
Collapse
|
21
|
Yang X, Reynolds K, Madabushi R, Huang SM. Current Perspective on Residual Knowledge Gaps in the Assessment of Transporter-Mediated Drug Interactions. Clin Pharmacol Ther 2022; 112:450-452. [PMID: 35722741 DOI: 10.1002/cpt.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Assessment of transporter-mediated drug-drug interaction (DDI) is integral to drug development. A risk-based approach leveraging in vitro, in vivo, and in silico information is used to evaluate the DDI liability of drugs and inform the instructions of use. While tremendous advances have been made in recent decades, there are knowledge gaps warranting further research. Herein, we focus on select areas to advance assessment of DDI potential for drugs as substrates, inhibitors, or inducers of certain transporters.
Collapse
Affiliation(s)
- Xinning Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kellie Reynolds
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rajanikanth Madabushi
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|