1
|
Liu Z, Shao W, Wang X, Geng K, Wang W, Li Y, Chen Y, Xie H. Physiologically based pharmacokinetic models for predicting lamotrigine exposure and dose optimization in pediatric patients receiving combination therapy with carbamazepine or valproic acid. Pharmacotherapy 2024; 44:711-721. [PMID: 39206763 DOI: 10.1002/phar.4603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Lamotrigine (LTG) is an antiepileptic drug that has been used in pediatric epilepsy as a combination therapy or monotherapy after stabilization in recent years. However, there are significant drug-drug interactions (DDI) between LTG and combined drugs such as carbamazepine (CBZ) and valproic acid (VPA). It is particularly important to consider the risk of DDI in combination therapy for intractable epilepsy in pediatric patients. Therefore, it is necessary to adjust the dosage of LTG accordingly. The aim of this study was to establish and validate a pediatric physiologically based pharmacokinetic (PBPK) model for predicting LTG exposure. The model is designed to explore the potential for quantifying pharmacokinetic (PK) DDI of LTG when administered concurrently with CBZ or VPA in pediatric patients. METHOD Adult and pediatric PBPK models for LTG and VPA were developed using PK-Sim® software in combination with physiological information and drug-specific parameters, and a DDI model was developed in combination with the published CBZ model. The models were validated against available PK data. RESULTS Predictive and observational results in adults, children, and the DDI model were in good agreement. The recommended doses of LTG for preschool children (2-6 years) and school-aged children (6-12 years) in the absence of drug interactions were 1.47 and 1.2 times higher than those for adults, respectively; 3.1 and 2.6 times higher than those for adults in combination with CBZ; and 0.67 and 0.57 times lower than those for adults in combination with VPA. In addition, plasma exposures in adolescents (12-18 years) were similar to those in adults at the same doses. CONCLUSION We have successfully developed PBPK models and DDI models for LTG in adults and children, which provide a reference for rational drug use in the pediatric population.
Collapse
Affiliation(s)
- Zhiwei Liu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Wenhui Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Yiming Li
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Youjun Chen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Wannan Medical College, Wuhu, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
2
|
Rowland Yeo K, Gil Berglund E, Chen Y. Dose Optimization Informed by PBPK Modeling: State-of-the Art and Future. Clin Pharmacol Ther 2024; 116:563-576. [PMID: 38686708 DOI: 10.1002/cpt.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Model-informed drug development (MIDD) is a powerful quantitative approach that plays an integral role in drug development and regulatory review. While applied throughout the life cycle of the development of new drugs, a key application of MIDD is to inform clinical trial design including dose selection and optimization. To date, physiologically-based pharmacokinetic (PBPK) modeling, an established component of the MIDD toolkit, has mainly been used for assessment of drug-drug interactions (DDIs) and consequential dose adjustments in regulatory submissions. As a result of recent scientific advances and growing confidence in the utility of the approach, PBPK models are being increasingly applied to provide dose recommendations for subjects with differing ages, genetics, and disease states. In this review, we present our perspective on the current landscape of regulatory acceptance of PBPK applications supported by relevant case studies. We also discuss the recent progress and future challenges associated with expanding the utility of PBPK models into emerging areas for regulatory decision making, especially dose optimization in highly vulnerable and understudied populations and facilitating diversity in clinical trials.
Collapse
Affiliation(s)
| | - Eva Gil Berglund
- Certara Clinical Drug Development Solutions, Oss, The Netherlands
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
3
|
Dinh J, Johnson TN, Grimstein M, Lewis T. Physiologically Based Pharmacokinetics Modeling in the Neonatal Population-Current Advances, Challenges, and Opportunities. Pharmaceutics 2023; 15:2579. [PMID: 38004559 PMCID: PMC10675397 DOI: 10.3390/pharmaceutics15112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an approach to predicting drug pharmacokinetics, using knowledge of the human physiology involved and drug physiochemical properties. This approach is useful when predicting drug pharmacokinetics in under-studied populations, such as pediatrics. PBPK modeling is a particularly important tool for dose optimization for the neonatal population, given that clinical trials rarely include this patient population. However, important knowledge gaps exist for neonates, resulting in uncertainty with the model predictions. This review aims to outline the sources of variability that should be considered with developing a neonatal PBPK model, the data that are currently available for the neonatal ontogeny, and lastly to highlight the data gaps where further research would be needed.
Collapse
Affiliation(s)
- Jean Dinh
- Certara UK Limited, Sheffield S1 2BJ, UK; (J.D.); (T.N.J.)
| | | | - Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Tamorah Lewis
- Pediatric Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
4
|
Johnson TN, Abduljalil K, Pan X, Emoto C. Development and Verification of a Japanese Pediatric Physiologically Based Pharmacokinetic Model with Emphasis on Drugs Eliminated by Cytochrome P450 or Renal Excretion. J Clin Pharmacol 2023; 63:1156-1168. [PMID: 37496106 DOI: 10.1002/jcph.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are useful in bridging drug exposure in different ethnic groups, and there is increasing regulatory application of this approach in adults. Reported pediatric PBPK models tend to focus on the North European population, with few examples in other ethnic groups. This study describes the development and verification of a Japanese pediatric PBPK population. The development of the model was based on the existing North European pediatric population. Japanese systems and clinical data were collated from public databases and the literature, and the underlying demographics and equations were optimized so that physiological outputs represented the Japanese pediatric population. The model was tested using 14 different small molecule drugs, eliminated by a variety of pathways, including cytochrome P450 3A4 (CYP3A4) metabolism and renal excretion. Given the limitations of the clinical data, the overall performance of the model was good, with 44/62 predictions for PK parameters (area under the plasma drug concentration-time curve, AUC; maximum serum concentration, Cmax ; clearance, CL) being within 0.8- to 1.25-fold, 56/62 within 0.67- to 1.5-fold, and 61/62 within 0.5- to 2.0-fold of the observed values. Specific results for the 5 CYP3A4 substrates showed 20/31 cases were predicted within 0.8- to 1.25-fold, 27/31 within 0.67- to 1.5-fold, and all were within 0.5- to 2.0-fold of the observed values. Given the increased regulatory use of pediatric PBPK in drug development, expanding these models to other ethnic groups are important. Considering qualifying these models based on the context of use, there is a need to expand on the current research to include a larger range of drugs with different elimination pathways. Collaboration among academic, industry, model providers, and regulators will facilitate further development.
Collapse
Affiliation(s)
| | | | - Xian Pan
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Chie Emoto
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| |
Collapse
|
5
|
Venkatakrishnan K, Brown KE, Giacomini KM, van der Graaf PH. Diversity, Equity, and Inclusion: Translating Clinical Pharmacology for All. Clin Pharmacol Ther 2023; 113:457-461. [PMID: 36798016 DOI: 10.1002/cpt.2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Affiliation(s)
| | - Karen E Brown
- L.S. Skaggs Institute for Health Innovation, University of Montana, Missoula, Montana, USA.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Piet H van der Graaf
- Certara QSP, Certara UK Ltd., Sheffield, UK.,Leiden University, Leiden, The Netherlands
| |
Collapse
|