1
|
Maity S, Kumar P. A synergistic heterojunction of SnS 2/SnSSe nanosheets on GaN for advanced self-powered photodetectors. NANOSCALE HORIZONS 2024; 9:1318-1329. [PMID: 38808592 DOI: 10.1039/d4nh00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Tin-based TMDCs are gaining traction in optoelectronics due to their eco-friendliness and easy synthesis, contrasting Mo/W-based counterparts. This study pioneers the solvothermal synthesis of highly crystalline SnSSe alloy, akin to Janus structures, bridging a notable research gap. By integrating SnS2/SnSSe materials onto a GaN platform, a synergistic heterojunction is created, enhancing light absorption and the electron-hole pair separation efficiency, demonstrating a self-powered photodetection. The GaN/SnS2/SnSSe heterojunction showcases a staircase-like (type-II) band alignment and exceptional performance metrics: high photoresponsivity of 314.96 A W-1, specific detectivity of 2.0 × 1014 jones, and external quantum efficiency of 10.7 × 104% under 365 nm illumination at 150 nW cm-2 intensity and 3 V bias. Notably, the device displays intensity-dependent photocurrent and photoswitching behaviors without external bias, highlighting its unique self-powered attributes. This study underscores SnS2's significance in optoelectronics and explores SnSSe integration into van der Waals heterostructures, promising advanced photodetection devices and bias-free optoelectronics.
Collapse
Affiliation(s)
- Sukhendu Maity
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Praveen Kumar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
2
|
Zhang R, Bi L, Wang D, Lin Y, Zou X, Xie T, Li Z. Investigation on various photo-generated carrier transfer processes of SnS2/g-C3N4 heterojunction photocatalysts for hydrogen evolution. J Colloid Interface Sci 2020; 578:431-440. [DOI: 10.1016/j.jcis.2020.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
3
|
Rambabu A, Singh DK, Pant R, Nanda KK, Krupanidhi SB. Self-powered, ultrasensitive, room temperature humidity sensors using SnS 2 nanofilms. Sci Rep 2020; 10:14611. [PMID: 32884038 PMCID: PMC7473760 DOI: 10.1038/s41598-020-71615-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Humidity monitoring has become extremely vital in various technological fields such as environment control, biomedical engineering, and so on. Therefore, a substantial interest lies in the development of fast and highly sensitive devices with high figures of merit. Self-powered and ultrasensitive humidity sensors based on SnS2 nanofilms of different film thicknesses have been demonstrated in this work. The sensing behavior has been investigated in the relative humidity (RH) range of 2-99%. The observed results reveal a remarkable response and ultrafast detection even with zero applied bias (self-powered mode), with response and recovery times of ~ 10 and ~ 0.7 s, respectively. The self-powered behavior has been attributed to the inhomogeneities and the asymmetry in the contact electrodes. The highest sensitivity of ~ 5.64 × 106% can be achieved at an applied bias of 5 V. This approach of fabricating such highly responsive, self-powered and ultrafast sensors with simple device architectures will be useful for designing futuristic sensing devices.
Collapse
Affiliation(s)
- A Rambabu
- Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam, Andhra Pradesh, 532127, India.
| | - Deependra Kumar Singh
- Quantum Structures and Device Laboratory, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Rohit Pant
- Quantum Structures and Device Laboratory, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - K K Nanda
- Quantum Structures and Device Laboratory, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - S B Krupanidhi
- Quantum Structures and Device Laboratory, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Li G, Sun Y, Sun S, Chen W, Zheng J, Chen F, Sun Z, Sun W. The effects of morphologies on photoreduction of carbon dioxide to gaseous fuel over tin disulfide under visible light irradiation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Cao Z, Yin Y, Fu P, Li D, Zhou Y, Deng Y, Peng Y, Wang W, Zhou W, Tang D. TiO 2 Nanosheet Arrays with Layered SnS 2 and CoO x Nanoparticles for Efficient Photoelectrochemical Water Splitting. NANOSCALE RESEARCH LETTERS 2019; 14:342. [PMID: 31712915 PMCID: PMC6848439 DOI: 10.1186/s11671-019-3168-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/30/2019] [Indexed: 05/14/2023]
Abstract
Converting solar energy into sustainable hydrogen fuel by photoelectrochemical (PEC) water splitting is a promising technology to solve increasingly serious global energy supply and environmental issues. However, the PEC performance based on TiO2 nanomaterials is hindered by the limited sunlight-harvesting ability and its high recombination rate of photogenerated charge carriers. In this work, layered SnS2 absorbers and CoOx nanoparticles decorated two-dimensional (2D) TiO2 nanosheet array photoelectrode have been rationally designed and successfully synthesized, which remarkably enhanced the PEC performance for water splitting. As the result, photoconversion efficiency of TiO2/SnS2/CoOx and TiO2/SnS2 hybrid photoanodes increases by 3.6 and 2.0 times under simulated sunlight illumination, compared with the bare TiO2 nanosheet arrays photoanode. Furthermore, the TiO2/SnS2/CoOx photoanode also presented higher PEC stability owing to CoOx catalyst served as efficient water oxidation catalyst as well as an effective protectant for preventing absorber photocorrosion.
Collapse
Affiliation(s)
- Zhou Cao
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yanling Yin
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Peng Fu
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Dong Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yulan Zhou
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yuanwen Deng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yuehua Peng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Weike Wang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Weichang Zhou
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
6
|
Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019. [DOI: 10.3390/catal9030276] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Photocatalytic water splitting is a sustainable technology for the production of clean fuel in terms of hydrogen (H2). In the present study, hydrogen (H2) production efficiency of three promising photocatalysts (titania (TiO2-P25), graphitic carbon nitride (g-C3N4), and cadmium sulfide (CdS)) was evaluated in detail using various sacrificial agents. The effect of most commonly used sacrificial agents in the recent years, such as methanol, ethanol, isopropanol, ethylene glycol, glycerol, lactic acid, glucose, sodium sulfide, sodium sulfite, sodium sulfide/sodium sulfite mixture, and triethanolamine, were evaluated on TiO2-P25, g-C3N4, and CdS. H2 production experiments were carried out under simulated solar light irradiation in an immersion type photo-reactor. All the experiments were performed without any noble metal co-catalyst. Moreover, photolysis experiments were executed to study the H2 generation in the absence of a catalyst. The results were discussed specifically in terms of chemical reactions, pH of the reaction medium, hydroxyl groups, alpha hydrogen, and carbon chain length of sacrificial agents. The results revealed that glucose and glycerol are the most suitable sacrificial agents for an oxide photocatalyst. Triethanolamine is the ideal sacrificial agent for carbon and sulfide photocatalyst. A remarkable amount of H2 was produced from the photolysis of sodium sulfide and sodium sulfide/sodium sulfite mixture without any photocatalyst. The findings of this study would be highly beneficial for the selection of sacrificial agents for a particular photocatalyst.
Collapse
|
7
|
Hou X, Mao Y, Yang J, Ma ZF, Yuan X. Improved Performance of Rechargeable Li-O2
Batteries with Plate-like SnS2
as Efficient Cathode Catalyst. ChemElectroChem 2018. [DOI: 10.1002/celc.201800994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaoyan Hou
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Ya Mao
- State key laboratory of space power-sources technology; Shanghai Institute of Space Power-sources; Shanghai 200245 China
| | - Jun Yang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Zi-Feng Ma
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Xianxia Yuan
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|