1
|
Dubey Y, Mahalingavelar P, Rajput D, Shewale DJ, Soppina V, Kanvah S. Fluorescent styryl pyridine- N-oxide probes for imaging lipid droplets. Org Biomol Chem 2023; 21:8393-8402. [PMID: 37819137 DOI: 10.1039/d3ob01365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Lipid droplets (LDs) have emerged as major regulators of cellular metabolism, encompassing lipid storage, membrane synthesis, viral replication, and protein degradation. Exclusive studies have suggested a direct link between LDs and cancer, as a notable abundance of LDs is found in cancerous cells. Therefore, monitoring the location, distribution, and movements of LDs is of paramount importance for understanding their involvement in biological processes. To target LDs, we designed and synthesized fluorophores with a styryl scaffold bearing electron-donating amino groups and pyridine-N-oxide, a zwitterionic acceptor moiety. We explored their photophysical properties in various solvents and conducted systematic DFT calculations on the synthesized fluorescent molecules, comparing them with neutral pyridine and cationic pyridinium styryl dyes. The results demonstrate that diphenylaminostyryl pyridine-N-oxide (TNO) shows excellent imaging of LDs, in contrast to the behavior of cationic styrylpyridinium (TNC), which primarily localizes within the mitochondria. Notably, pyridine N-oxide offers several benefits: an increased dipole moment facilitating charge separation between donors and acceptors, substantial HOMO and LUMO stabilization, improved water solubility, favorable redox properties, and bathochromic-shifted absorption/emission spectra, showing promise as a fluorescent tool for probing the cellular-biological realm.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | | | - Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Dipeshwari J Shewale
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
2
|
Das A, Maji B. Direct C(3)5-H Polyfluoroarylation of 2-Amino/alkoxy Pyridines Enabled by a Transient and Electron-deficient Palladium Intermediate. Chemistry 2023; 29:e202301436. [PMID: 37154162 DOI: 10.1002/chem.202301436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Herein, we present an unprecedented azine-limited C5-H polyfluoroarylation of 2-aminopyridines enabled by a transient and electron-deficient perfluoroaryl-Pd species via C-H/C-H coupling. The protocol further allows C3(5)-H polyfluoroarylation of 2-alkoxypyridines guided by sterics and electronics for the first time. The late-stage C-H functionalization of drugs, drug derivatives, and natural product derivatives and synthesis of C5-aryl drug derivatives further demonstrated the method's utility. The preliminary mechanistic studies reveal that the synergistic combination of the bulky yet electrophilic perfluoroaryl-Pd species and the partial nucleophilicity of the C5-position of 2-amino/alkoxy-pyridines is the origin of reactivity and selectivity. Importantly, the first experimental evidence for the role of diisopropyl sulfide is provided.
Collapse
Affiliation(s)
- Animesh Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
3
|
Jenni S, Ponsot F, Baroux P, Collard L, Ikeno T, Hanaoka K, Quesneau V, Renault K, Romieu A. Design, synthesis and evaluation of enzyme-responsive fluorogenic probes based on pyridine-flanked diketopyrrolopyrrole dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119179. [PMID: 33248891 DOI: 10.1016/j.saa.2020.119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The ever-growing demand for fluorogenic dyes usable in the rapid construction of analyte-responsive fluorescent probes, has recently contributed to a revival of interest in the chemistry of diketopyrrolopyrrole (DPP) pigments. In this context, we have explored the potential of symmetrical and unsymmetrical DPP derivatives bearing two or one 4-pyridyl substituents acting as optically tunable group(s). The unique fluorogenic behavior of these molecules, closely linked to N-substitution/charge state of their pyridine unit (i.e., neutral pyridine or cationic pyridinium), has been used to design DPP-based fluorescent probes for detection of hypoxia-related redox enzymes and penicillin G acylase (PGA). In this paper, we describe synthesis, spectral characterization and bioanalytical validations of these probes. Dramatic differences in terms of aqueous stability and enzymatic fluorescence activation were observed. This systematic study enables to delineate the scope of application of pyridine-flanked DPP fluorophores in the field of enzyme biosensing.
Collapse
Affiliation(s)
- Sébastien Jenni
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France.
| | - Flavien Ponsot
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Pierre Baroux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Lucile Collard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Valentin Quesneau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Kévin Renault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France.
| |
Collapse
|
4
|
Skonieczny K, Papadopoulos I, Thiel D, Gutkowski K, Haines P, McCosker PM, Laurent AD, Keller PA, Clark T, Jacquemin D, Guldi DM, Gryko DT. How To Make Nitroaromatic Compounds Glow: Next-Generation Large X-Shaped, Centrosymmetric Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020; 59:16104-16113. [PMID: 32492240 PMCID: PMC7689858 DOI: 10.1002/anie.202005244] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Red‐emissive π‐expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three‐step strategy involving the preparation of diketopyrrolopyrrole followed by N‐arylation and subsequent intramolecular palladium‐catalyzed direct arylation. Comprehensive spectroscopic assays combined with first‐principles calculations corroborated that both N‐arylated and fused DPPs reach a locally excited (S1) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry, PAS. 44/52 Kasprzaka, 01-224, Warsaw, Poland
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Krzysztof Gutkowski
- Institute of Organic Chemistry, PAS. 44/52 Kasprzaka, 01-224, Warsaw, Poland
| | - Philipp Haines
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Patrick M McCosker
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany.,School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Adèle D Laurent
- Université de Nantes, CNRS, CEISAM UMR, 6230, Nantes, France
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR, 6230, Nantes, France
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Daniel T Gryko
- Institute of Organic Chemistry, PAS. 44/52 Kasprzaka, 01-224, Warsaw, Poland
| |
Collapse
|
5
|
Skonieczny K, Papadopoulos I, Thiel D, Gutkowski K, Haines P, McCosker PM, Laurent AD, Keller PA, Clark T, Jacquemin D, Guldi DM, Gryko DT. How To Make Nitroaromatic Compounds Glow: Next‐Generation Large X‐Shaped, Centrosymmetric Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry PAS. 44/52 Kasprzaka 01-224 Warsaw Poland
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | | | - Philipp Haines
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | - Patrick M. McCosker
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Germany
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | | | - Paul A. Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Germany
| | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | - Daniel T. Gryko
- Institute of Organic Chemistry PAS. 44/52 Kasprzaka 01-224 Warsaw Poland
| |
Collapse
|
6
|
Pieczykolan M, Sadowski B, Gryko DT. An Efficient Method for the Programmed Synthesis of Multifunctional Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michał Pieczykolan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
7
|
Pieczykolan M, Sadowski B, Gryko DT. An Efficient Method for the Programmed Synthesis of Multifunctional Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020; 59:7528-7535. [DOI: 10.1002/anie.201915953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Michał Pieczykolan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
8
|
Murphy AS, Killalea CE, Humphreys J, Hume PA, Cliffe MJ, Murray GJ, Davies ES, Lewis W, Amabilino DB. Ground and Excited States of Bis‐4‐Methoxybenzyl‐Substituted Diketopyrrolopyrroles: Spectroscopic and Electrochemical Studies. Chempluschem 2019; 84:1413-1422. [DOI: 10.1002/cplu.201900286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alanna S. Murphy
- GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham Triumph Road Nottingham NG7 2TU United Kingdom
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| | - C. Elizabeth Killalea
- GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham Triumph Road Nottingham NG7 2TU United Kingdom
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| | - Joshua Humphreys
- GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham Triumph Road Nottingham NG7 2TU United Kingdom
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| | - Paul A. Hume
- GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham Triumph Road Nottingham NG7 2TU United Kingdom
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
- MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Chemical and Physical SciencesVictoria University of Wellington Wellington 6010 New Zealand
| | - Matthew J. Cliffe
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| | - Glen J. Murray
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| | - E. Stephen Davies
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| | - William Lewis
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
- Chemistry BuildingThe University of Sydney Eastern Avenue NSW 2006 Australia
| | - David B. Amabilino
- GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of Nottingham Triumph Road Nottingham NG7 2TU United Kingdom
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD United Kingdom
| |
Collapse
|
9
|
Shimizu S. aza-BODIPY synthesis towards vis/NIR functional chromophores based on a Schiff base forming reaction protocol using lactams and heteroaromatic amines. Chem Commun (Camb) 2019; 55:8722-8743. [DOI: 10.1039/c9cc03365c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Schiff base forming reaction of lactams and heteroaromatic amines led to creation of a new class of aza-BODIPY analogues as visible and near infrared functional chromophores.
Collapse
Affiliation(s)
- Soji Shimizu
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
10
|
Gutkowski K, Azarias C, Banasiewicz M, Kozankiewicz B, Jacquemin D, Gryko DT. Synthesis and Photophysical Properties of N
-Arylated Diketopyrrolopyrroles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krzysztof Gutkowski
- Institute of Organic Chemistry; Polish Academy of Science; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Cloé Azarias
- CEISAM, UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes Cedex 3 France
| | - Marzena Banasiewicz
- Institute of Physics; Polish Academy of Science; Al. Lotników 32/46 02-668 Warsaw Poland
| | - Bolesław Kozankiewicz
- Institute of Physics; Polish Academy of Science; Al. Lotników 32/46 02-668 Warsaw Poland
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière 44322 Nantes Cedex 3 France
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Science; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
11
|
Zhou Y, Ma C, Gao N, Wang Q, Lo PC, Wong KS, Xu QH, Kinoshita T, Ng DKP. Pyrrolopyrrole aza boron dipyrromethene based two-photon fluorescent probes for subcellular imaging. J Mater Chem B 2018; 6:5570-5581. [DOI: 10.1039/c8tb01832d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of two-photon-absorbing pyrrolopyrrole aza boron dipyrromethenes have been prepared which can serve as fluorescent probes for subcellular imaging.
Collapse
Affiliation(s)
- Yimin Zhou
- Department of Chemistry
- The Chinese University of Hong Kong
- Hong Kong
- China
| | - Chao Ma
- Department of Physics
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Nengyue Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Qiong Wang
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- China
| | - Pui-Chi Lo
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- China
| | - Kam Sing Wong
- Department of Physics
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Qing-Hua Xu
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Takumi Kinoshita
- Department of General System Studies
- Graduate School of Arts and Sciences
- The University of Tokyo
- Meguro-ku
- Japan
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Hong Kong
- China
| |
Collapse
|