1
|
Wang J, Zhou F, Xu Y, Zhang L. Recent Advances in Organic Photocatalyst-Promoted Carbohydrate Synthesis and Modification under Light Irradiation. Chem Asian J 2025:e202401114. [PMID: 39745292 DOI: 10.1002/asia.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/06/2024] [Indexed: 01/14/2025]
Abstract
Photoredox catalysis has been developed as a sustainable and eco-friendly catalytic strategy, which might provide innovative solutions to solve the current synthetic challenges and barriers in carbohydrate chemistry. During the last few decades, the study of organic photocatalyst-promoted carbohydrate synthesis and modification has received significant attention, which provides an excellent and inexpensive metal-free alternative to photoredox catalysis as well as introduces a new fastest-growing era to access complex carbohydrates simply. In this review, we aim to provide an overview of organic photocatalyst-promoted carbohydrate synthesis and modification under light irradiation, which is expected to provide new directions for further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| |
Collapse
|
2
|
Corpas J, Alonso M, Leonori D. Boryl radical-mediated halogen-atom transfer (XAT) enables the Sonogashira-like alkynylation of alkyl halides. Chem Sci 2024:d4sc06516f. [PMID: 39483251 PMCID: PMC11521202 DOI: 10.1039/d4sc06516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Alkynes are a crucial class of materials with application across the wide range of chemical disciplines. The alkynylation of alkyl halides presents an ideal strategy for assembling these materials. Current methods rely on the intrinsic electrophilic nature of alkyl halides to couple with nucleophilic acetylenic systems, but these methods faces limitations in terms of applicability and generality. Herein, we introduce a different approach to alkynylation of alkyl halides that proceeds via radical intermediates and uses alkynyl sulfones as coupling partners. This strategy exploits the ability of amine-ligated boryl radicals to activate alkyl iodides and bromides through halogen-atom transfer (XAT). The resulting radicals then undergo a cascade of α-addition and β-fragmentation with the sulfone reagent, leading to the construction of C(sp3)-C(sp) bonds. The generality of the methodology has been demonstrated by its successful application in the alkynylation of complex and high-value molecules.
Collapse
Affiliation(s)
- Javier Corpas
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Maialen Alonso
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| |
Collapse
|
3
|
Kiprova N, Desnoyers M, Narobe R, Klufts-Edel A, Chaud J, König B, Compain P, Kern N. Towards a General Access to 1-Azaspirocyclic Systems via Photoinduced, Reductive Decarboxylative Radical Cyclizations. Chemistry 2023:e202303841. [PMID: 38084823 DOI: 10.1002/chem.202303841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/13/2024]
Abstract
A convenient and versatile approach to important 1-azaspirocyclic systems relevant to medicinal chemistry and natural products is reported herein. The main strategy relies on a reductive decarboxylative cyclization of redox-active esters which can be rapidly assembled from abundant cyclic azaacids and tailored acceptor sidechains, with a focus on alkyne acceptors enabling the generation of useful exo-alkene moieties. Diastereoconvergent variants were studied and could be achieved either through remote stereocontrol or conformational restriction in bicyclic carbamate substrates. Two sets of metal-free photocatalytic conditions employing inexpensive eosin Y were disclosed and studied experimentally to highlight key mechanistic divergences.
Collapse
Affiliation(s)
- Natalia Kiprova
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marine Desnoyers
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Rok Narobe
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Arthur Klufts-Edel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Juliane Chaud
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
4
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
5
|
Wei W, Zhan L, Gao L, Huang G, Ma X. Research Progress of Electrochemical Synthesis of C-Sulfonyl Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
7
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
8
|
Tripathy AR, Kumar A, Rahmathulla A R, Jha AK, Yatham VR. Visible-Light-Driven α-Aminoalkyl Radical-Mediated C(sp 3)-C(sp) Cross-Coupling of Iodoalkanes and Alkynyl Bromides. Org Lett 2022; 24:5186-5191. [PMID: 35833707 DOI: 10.1021/acs.orglett.2c02018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a simple protocol for metal-free cross-coupling between unactivated alkyl iodides and terminal alkynyl bromides promoted by visible light. The salient features of this transformation are the utilization of an organic photocatalyst and commercially available tri-n-butylamine as a reductant. This protocol couples a variety of unactivated iodoalkanes containing different functional groups and with a variety of terminal alkynyl bromides under mild reaction conditions to afford the substituted alkynes in good yields.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Amit Kumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Rizwana Rahmathulla A
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Avishek Kumar Jha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| |
Collapse
|
9
|
SOMOphilic Alkynylation of Unreactive Alkenes Enabled by Iron-Catalyzed Hydrogen Atom Transfer. Molecules 2021; 27:molecules27010033. [PMID: 35011265 PMCID: PMC8746543 DOI: 10.3390/molecules27010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
We report an efficient and practical iron-catalyzed hydrogen atom transfer protocol for assembling acetylenic motifs into functional alkenes. Diversities of internal alkynes could be obtained from readily available alkenes and acetylenic sulfones with excellent Markovnikov selectivity. An iron hydride hydrogen atom transfer catalytic cycle was described to clarify the mechanism of this reaction.
Collapse
|
10
|
Liang L, Guo G, Li C, Wang SL, Wang YH, Guo HM, Niu HY. Copper-Catalyzed Intermolecular Alkynylation and Allylation of Unactivated C(sp 3)-H Bonds via Hydrogen Atom Transfer. Org Lett 2021; 23:8575-8579. [PMID: 34669414 DOI: 10.1021/acs.orglett.1c03298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe Cu-catalyzed intermolecular alkynylation and allylation of unactivated C(sp3)-H bonds with singly occupied molecular orbital-philes (SOMO-philes) via hydrogen atom transfer (HAT). Employing N-fluoro-sulfonamide as a HAT reagent, a set of substituted alkene and alkyne compounds were synthesized in high yields with good regioselectivity and functional-group compatibility. Late-stage functionalization of natural products and drug molecules is also demonstrated.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Ge Guo
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Song-Lin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yue-Hui Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hai-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province 453007, China
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
11
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
12
|
Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Utilization of C(
sp
3
)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sukhen Karmakar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Nicholas A. Meanwell
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arvind Mathur
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arun Kumar Gupta
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| |
Collapse
|
13
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
14
|
He S, Li H, Chen X, Krylov IB, Terent'ev AO, Qu L, Yu B. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Ge D, Wang X, Chu XQ. SOMOphilic alkynylation using acetylenic sulfones as functional reagents. Org Chem Front 2021. [DOI: 10.1039/d1qo00798j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in SOMOphilic alkynylation reactions by using acetylenic sulfones as functional reagents are summarized.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
17
|
Meng X, Xu H, Cao X, Cai XM, Luo J, Wang F, Huang S. Electrochemically Enabled Sulfonylation of Alkynes with Sodium Sulfinates. Org Lett 2020; 22:6827-6831. [DOI: 10.1021/acs.orglett.0c02341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangtai Meng
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hehua Xu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, P. R. China
| | - Xu-Min Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
18
|
Le Vaillant F, Waser J. Alkynylation of radicals: spotlight on the "Third Way" to transfer triple bonds. Chem Sci 2019; 10:8909-8923. [PMID: 31762975 PMCID: PMC6855197 DOI: 10.1039/c9sc03033f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
The alkynylation of radical intermediates has been known since a long time, but had not been broadly applied in synthetic chemistry, in contrast to the alkynylation of either electrophiles or nucleophiles. In the last decade however, it has been intensively investigated leading to new disconnections to introduce versatile triple bonds into organic compounds. Nowadays, such processes are important alternatives to classical nucleophilic and electrophilic alkynylations. Efficient alkyne transfer reagents, in particular arylsulfones and hypervalent iodine reagents were introduced. Direct alkynylation, as well as cascade reactions, were subsequently developed. If relatively harsh conditions were required in the past, a new era began with progress in photoredox and transition metal catalysis. Starting from various radical precursors, alkynylations under very mild reaction conditions were rapidly discovered. This review covers the evolution of radical alkynylation, from its emergence to its current intensive stage of development. It will focus in particular on improvements for the generation of radicals and on the extension of the scope of radical precursors and alkyne sources.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| |
Collapse
|
19
|
Garreau M, Le Vaillant F, Waser J. C‐Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
20
|
Garreau M, Le Vaillant F, Waser J. C‐Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2019; 58:8182-8186. [DOI: 10.1002/anie.201901922] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801331] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matiur Rahman
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Anindita Mukherjee
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Igor S. Kovalev
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Dmitry S. Kopchuk
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Mikhail V. Tsurkan
- Max Bergmann Center of BiomaterialsLeibniz Institute of Polymer Research Hohe Strasse 6 01069 Dresden Germany
| | - Adinath Majee
- Department of ChemistryVisva-Bharati (A Central University) Santiniketan 731235 India
| | - Brindaban C. Ranu
- Department of Organic ChemistryIndian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Valery N. Charushin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| |
Collapse
|
22
|
Ludvíková L, Štacko P, Sperry J, Klán P. Photosensitized Cross-Linking of Tryptophan and Tyrosine Derivatives by Rose Bengal in Aqueous Solutions. J Org Chem 2018; 83:10835-10844. [DOI: 10.1021/acs.joc.8b01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucie Ludvíková
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Štacko
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Petr Klán
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Schwarz J. Photocatalytic decarboxylations. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
During the last years, the field of photocatalytic decarboxylations has emerged rapidly. Carboxylic acids are inexpensive, non-toxic and renewable starting materials for the synthesis of pharmaceuticals or platform chemicals. The traceless extrusion of CO2 gives radical intermediates, which react in diverse cross-coupling reactions. Merging photocatalysis with metal catalysis enables even broader substrate scopes or enantioselective reactions. An overview of photocatalytic decarboxylative reactions of different classes of carboxylic acids is given within this chapter.
Collapse
|
24
|
Wimmer A, König B. Photocatalytic formation of carbon-sulfur bonds. Beilstein J Org Chem 2018; 14:54-83. [PMID: 29379578 PMCID: PMC5769090 DOI: 10.3762/bjoc.14.4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
This review summarizes recent developments in photocatalyzed carbon-sulfur bond formation. General concepts, synthetic strategies and the substrate scope of reactions yielding thiols, disulfides, sulfoxides, sulfones and other organosulfur compounds are discussed together with the proposed mechanistic pathways.
Collapse
Affiliation(s)
- Alexander Wimmer
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Burkhard König
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Mumtaz S, Robertson MJ, Oelgemöller M. Recent Advances in Photodecarboxylations Involving Phthalimides. Aust J Chem 2018. [DOI: 10.1071/ch18220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Owing to their favourable photophysical and electrochemical properties, phthalimides undergo a variety of highly efficient photodecarboxylation reactions. These transformations have been applied to the synthesis of macrocyclic compounds as well as bioactive addition adducts. N-Acetoxyphthalimides are versatile precursors to imidyl and alkyl radicals through photodecarboxylation and have subsequently been used for a variety of coupling reactions. The generally mild reaction conditions make these reactions attractive for green chemical applications. The process protocols were successfully transferred to novel photoreactor devices, among these falling film or continuous flow reactors.
Collapse
|
26
|
Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2017; 56:11906-11910. [PMID: 28636185 PMCID: PMC5792189 DOI: 10.1002/anie.201705107] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/06/2017] [Indexed: 12/17/2022]
Abstract
The development of a new decarboxylative cross-coupling method that affords terminal and substituted alkynes from various carboxylic acids is described using both nickel- and iron-based catalysts. The use of N-hydroxytetrachlorophthalimide (TCNHPI) esters is crucial to the success of the transformation, and the reaction is amenable to in situ carboxylic acid activation. Additionally, an inexpensive, commercially available alkyne source is employed in this formal homologation process that serves as a surrogate for other well-established alkyne syntheses. The reaction is operationally simple and broad in scope while providing succinct and scalable avenues to previously reported synthetic intermediates.
Collapse
Affiliation(s)
- Joel M Smith
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tian Qin
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rohan R Merchant
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jacob T Edwards
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lara R Malins
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhiqing Liu
- Asymchem Laboratories (Tianjin) Co., Ltd., TEDA, Tianjin, 300457, P.R. China
| | - Guanda Che
- Asymchem Laboratories (Tianjin) Co., Ltd., TEDA, Tianjin, 300457, P.R. China
| | - Zichao Shen
- Asymchem Laboratories (Tianjin) Co., Ltd., TEDA, Tianjin, 300457, P.R. China
| | - Scott A Shaw
- Discovery Chemistry, Bristol-Myers Squibb, 350 Carter Road, Hopewell, NJ, 08540, USA
| | - Martin D Eastgate
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Phil S Baran
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
27
|
Smith JM, Qin T, Merchant RR, Edwards JT, Malins LR, Liu Z, Che G, Shen Z, Shaw SA, Eastgate MD, Baran PS. Decarboxylative Alkynylation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joel M. Smith
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Tian Qin
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Rohan R. Merchant
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Jacob T. Edwards
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Lara R. Malins
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| | - Zhiqing Liu
- Asymchem Laboratories (Tianjin) Co., Ltd.; TEDA; Tianjin 300457 P.R. China
| | - Guanda Che
- Asymchem Laboratories (Tianjin) Co., Ltd.; TEDA; Tianjin 300457 P.R. China
| | - Zichao Shen
- Asymchem Laboratories (Tianjin) Co., Ltd.; TEDA; Tianjin 300457 P.R. China
| | - Scott A. Shaw
- Discovery Chemistry; Bristol-Myers Squibb; 350 Carter Road Hopewell NJ 08540 USA
| | - Martin D. Eastgate
- Chemical Development; Bristol-Myers Squibb; One Squibb Drive New Brunswick NJ 08903 USA
| | - Phil S. Baran
- The Scripps Research Institute (TSRI); North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|