1
|
Villabona M, Marco A, Sebastián RM, Guirado G, Hernando J. Amplified Light-Induced p Ka Modulation with Diarylethene Photoswitches. J Org Chem 2024; 89:17991-18002. [PMID: 39614816 DOI: 10.1021/acs.joc.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The reversible modulation of acidity using molecular photoswitches enables the remote control of a variety of (bio)chemical processes with light. Herein we investigated the structural features that allow amplifying photoinduced pKa variation in phenol-diarylethene conjugates, which toggle between low- and high-acidity states by switching the conjugation between the ionizable moiety and electron-withdrawing groups upon photoisomerization. By tuning the structure of these conjugates, high pKa modulation amplitudes were accomplished that surpass those previously reported.
Collapse
Affiliation(s)
- Marc Villabona
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Arnau Marco
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Rosa M Sebastián
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
3
|
Wimberger L, Prasad SKK, Peeks MD, Andréasson J, Schmidt TW, Beves JE. Large, Tunable, and Reversible pH Changes by Merocyanine Photoacids. J Am Chem Soc 2021; 143:20758-20768. [PMID: 34846132 DOI: 10.1021/jacs.1c08810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular photoswitches capable of generating precise pH changes will allow pH-dependent processes to be controlled remotely and noninvasively with light. We introduce a series of new merocyanine photoswitches, which deliver reversible bulk pH changes up to 3.2 pH units (pH 6.5 to pH 3.3) upon irradiation with 450 nm light, displaying tunable and predictable timescales for thermal recovery. We present models to show that the key parameters for optimizing the bulk pH changes are measurable: the solubility of the photoswitch, the acidity of the merocyanine form, the thermal equilibrium position between the spiropyran and the merocyanine isomers, and the increased acidity under visible light irradiation. Using ultrafast transient absorption spectroscopy, we determined the quantum yields for the ring-closing reaction and found that the lifetimes of the transient cis-merocyanine isomers ranged from 30 to 550 ns. Quantum yields did not appear to be a limitation for bulk pH switching. The models we present use experimentally determined parameters and are, in principle, able to predict the change in pH obtained for any related merocyanine photoacid.
Collapse
Affiliation(s)
- Laura Wimberger
- School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Shyamal K K Prasad
- School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Martin D Peeks
- School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Timothy W Schmidt
- School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
5
|
Koeppe B, Tolstoy PM, Guo J, Denisov GS, Limbach HH. Combined NMR and UV-Vis Spectroscopic Studies of Models for the Hydrogen Bond System in the Active Site of Photoactive Yellow Protein: H-Bond Cooperativity and Medium Effects. J Phys Chem B 2021; 125:5874-5884. [PMID: 34060830 DOI: 10.1021/acs.jpcb.0c09923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular hydrogen bonds in aprotic media were studied by combined (simultaneous) NMR and UV-vis spectroscopy. The species under investigation were anionic and featured single or coupled H-bonds between, for example, carboxylic groups and phenolic oxygen atoms (COO···H···OC)-, among phenolic oxygen atoms (CO···H···OC)-, and hydrogen bond chains between a carboxylic group and two phenolic oxygen atoms (COO···H···(OC)···H···OC)-. The last anion may be regarded as a small molecule model for the hydrogen bond system in the active site of wild-type photoactive yellow protein (PYP) while the others mimic the corresponding H-bonds in site-selective mutants. Proton positions in isolated hydrogen bonds and hydrogen bond chains were assessed by calculations for vacuum conditions and spectroscopically for the two media, CD2Cl2 and the liquefied gas mixture CDClF2/CDF3 at low temperatures. NMR parameters allow for the estimation of time-averaged H-bond geometries, and optical spectra give additional information about geometry distributions. Comparison of the results from the various systems revealed the effects of the formation of hydrogen bond chains and changes of medium conditions on the geometry of individual H-bonds. In particular, the proton in a hydrogen bond to a carboxylic group shifts from the phenolic oxygen atom in the system COO-···H-OC to the carboxylic group in COO-H···(OC)-···H-OC as a result of hydrogen bond formation to the additional phenolic donor. Increase in medium polarity may, however, induce the conversion of a structure of a type COO-H···(OC)-···H-OC to the type COO-···H-(OC)···H-OC. Application of these results obtained from the model systems to PYP suggests that both cooperative effects within the hydrogen bond chain and a low-polarity protein environment are prerequisites for the stabilization of negative charge on the cofactor and hence for the spectral tuning of the photoreceptor.
Collapse
Affiliation(s)
- Benjamin Koeppe
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gleb S Denisov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | | |
Collapse
|
6
|
Kennedy ADW, Sandler I, Andréasson J, Ho J, Beves JE. Visible‐Light Photoswitching by Azobenzazoles. Chemistry 2020; 26:1103-1110. [DOI: 10.1002/chem.201904309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Isolde Sandler
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | - Junming Ho
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | |
Collapse
|
7
|
Koeppe B, Schröder VRF. Effects of Polar Substituents and Media on the Performance ofN,N′‐Di‐tert‐Butoxycarbonyl‐Indigos as Photoswitches. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benjamin Koeppe
- Institut für ChemieHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Vincent R. F. Schröder
- Institut für ChemieHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|