1
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Bikbaeva G, Pilip A, Egorova A, Medvedev V, Mamonova D, Pankin D, Kalinichev A, Mayachkina N, Bakina L, Kolesnikov I, Leuchs G, Manshina A. Smart photopharmacological agents: LaVO 4:Eu 3+@vinyl phosphonate combining luminescence imaging and photoswitchable butyrylcholinesterase inhibition. NANOSCALE ADVANCES 2024; 6:4417-4425. [PMID: 39170980 PMCID: PMC11334978 DOI: 10.1039/d4na00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 08/23/2024]
Abstract
The combination of photoswitchability and bioactivity in one compound provides interesting opportunities for photopharmacology. Here, we report a hybrid compound that in addition allows for its visual localization. It is the first demonstration of its kind and it even shows high photoswitchability. The multifunctional nanomaterial hybrid, which we present, is composed of luminescent LaVO4:Eu3+ nanoparticles and vinyl phosphonate, the latter of which inhibits butyrylcholinesterase (BChE). This inhibition increases 7 times when irradiated with a 266 nm laser. We found that it is increased even further when vinyl phosphonate molecules are conjugated with LaVO4:Eu3+ nanoparticles, leading in total to a 20-fold increase in BChE inhibition upon laser irradiation. The specific luminescence spectrum of LaVO4:Eu3+ allows its spatial localization in various biological samples (chicken breast, Daphnia and Paramecium). Furthermore, laser irradiation of the LaVO4:Eu3+@vinyl phosphonate hybrid leads to a drop in luminescence intensity and in lifetime of the Eu3+ ion that can implicitly indicate photoswitching of vinyl phosphonate in the bioactive state. Thus, combining enhanced photoswitchability, bioactivity and luminescence induced localizability in a unique way, hybrid LaVO4:Eu3+@vinyl phosphonate can be considered as a promising tool for photopharmacology.
Collapse
Affiliation(s)
- Gulia Bikbaeva
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Anna Pilip
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Anastasiya Egorova
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
- St Petersburg State Technological Institute (Technical University) 26, Moskovski Ave. St Petersburg 190013 Russia
| | - Vasiliy Medvedev
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Daria Mamonova
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Dmitrii Pankin
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Alexey Kalinichev
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Natalya Mayachkina
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Lyudmila Bakina
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Ilya Kolesnikov
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Gerd Leuchs
- Max Planck Institute for the Science of Light Erlangen 91058 Germany
| | - Alina Manshina
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| |
Collapse
|
3
|
Bikbaeva G, Pilip A, Egorova A, Kolesnikov I, Pankin D, Laptinskiy K, Vervald A, Dolenko T, Leuchs G, Manshina A. All-in-One Photoactivated Inhibition of Butyrylcholinesterase Combined with Luminescence as an Activation and Localization Indicator: Carbon Quantum Dots@Phosphonate Hybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2409. [PMID: 37686919 PMCID: PMC10489800 DOI: 10.3390/nano13172409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Photopharmacology is a booming research area requiring a new generation of agents possessing simultaneous functions of photoswitching and pharmacophore. It is important that any practical implementation of photopharmacology ideally requires spatial control of the medicinal treatment zone. Thus, advances in the study of substances meeting all the listed requirements will lead to breakthrough research in the coming years. In this study, CQDs@phosphonate nanohybrids are presented for the first time and combine biocompatible and nontoxic luminescent carbon quantum dots (CQDs) with photoactive phosphonate enabling inhibition of butyrylcholinesterase (BChE), which is a prognostic marker of numerous diseases. The conjunction of these components in hybrids maintains photoswitching and provides enhancement of BChE inhibition. After laser irradiation with a wavelength of 266 nm, CQDs@phosphonate hybrids demonstrate a drastic increase of butyrylcholinesterase inhibition from 38% up to almost 100% and a simultaneous luminescence decrease. All the listed hybrid properties are demonstrated not only for in vitro experiments but also for complex biological samples, i.e., chicken breast. Thus, the most important achievement is the demonstration of hybrids characterized by a remarkable combination of all-in-one properties important for photopharmacology: (i) bioactivity toward butyrylcholinesterase inhibition, (ii) strong change of inhibition degree as a result of laser irradiation, luminescence as an indicator of (iii) bioactivity state, and of (iv) spatial localization on the surface of a sample.
Collapse
Affiliation(s)
- Gulia Bikbaeva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia;
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Anna Pilip
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg 197110, Russia
| | - Anastasia Egorova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg 197110, Russia
- World-Class Laboratory, St. Petersburg State Technological Institute (Technical University), St. Petersburg 190013, Russia
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Dmitrii Pankin
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia; (I.K.)
| | - Kirill Laptinskiy
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Alexey Vervald
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Tatiana Dolenko
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (K.L.)
| | - Gerd Leuchs
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia;
| |
Collapse
|
4
|
Spatz P, Steinmüller SAM, Tutov A, Poeta E, Morilleau A, Carles A, Deventer MH, Hofmann J, Stove CP, Monti B, Maurice T, Decker M. Dual-Acting Small Molecules: Subtype-Selective Cannabinoid Receptor 2 Agonist/Butyrylcholinesterase Inhibitor Hybrids Show Neuroprotection in an Alzheimer's Disease Mouse Model. J Med Chem 2023; 66:6414-6435. [PMID: 37127287 PMCID: PMC10184129 DOI: 10.1021/acs.jmedchem.3c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the synthesis and characterization of merged human butyrylcholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligands for the treatment of neurodegeneration. In total, 15 benzimidazole carbamates were synthesized and tested for their inhibition of human cholinesterases, also with regard to their pseudoirreversible binding mode and affinity toward both cannabinoid receptors in radioligand binding studies. After evaluation in a calcium mobilization assay as well as a β-arrestin 2 (βarr2) recruitment assay, two compounds with balanced activities on both targets were tested for their immunomodulatory effect on microglia activation and regarding their pharmacokinetic properties and blood-brain barrier penetration. Compound 15d, containing a dimethyl carbamate motif, was further evaluated in vivo, showing prevention of Aβ25-35-induced learning impairments in a pharmacological mouse model of Alzheimer's disease for both short- and long-term memory responses. Additional combination studies proved a synergic effect of BChE inhibition and CB2R activation in vivo.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sophie A M Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Anna Tutov
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Axelle Morilleau
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
5
|
Spatz P, Zimmermann T, Steinmüller S, Hofmann J, Maurice T, Decker M. Novel benzimidazole-based pseudo-irreversible butyrylcholinesterase inhibitors with neuroprotective activity in an Alzheimer's disease mouse model. RSC Med Chem 2022; 13:944-954. [PMID: 36092149 PMCID: PMC9384809 DOI: 10.1039/d2md00087c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 09/17/2023] Open
Abstract
As levels of acetylcholinesterase (AChE) decrease while levels of butyrylcholinesterase (BChE) increase in later stages of Alzheimer's disease (AD), BChE stands out as a promising target for treatment of AD. Therefore, several benzimidazole-carbamates were designed based on docking studies to inhibit BChE selectively over AChE, while retaining a reasonable solubility. Synthesized molecules exhibit IC50 values from 2.4 μM down to 3.7 nM with an overall highly hBChE-selective profile of the designed compound class. After evaluation of potential neurotoxicity, the most promising compound was further investigated in vivo. Compound 11d attenuates Aβ25-35-induced learning impairments in both spontaneous alternation and passive avoidance responses at a very low dosage of 0.03 mg kg-1, proving selective BChE inhibition to lead to effective neuroprotectivity in AD.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Thomas Zimmermann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Sophie Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM F-34095 Montpellier France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| |
Collapse
|
6
|
Paolino M, Rullo M, Maramai S, de Candia M, Pisani L, Catto M, Mugnaini C, Brizzi A, Cappelli A, Olivucci M, Corelli F, Altomare CD. Design, synthesis and biological evaluation of light-driven on-off multitarget AChE and MAO-B inhibitors. RSC Med Chem 2022; 13:873-883. [PMID: 35923722 PMCID: PMC9298480 DOI: 10.1039/d2md00042c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 08/13/2023] Open
Abstract
Neurodegenerative diseases are multifactorial disorders characterized by protein misfolding, oxidative stress, and neuroinflammation, finally resulting in neuronal loss and cognitive dysfunctions. Nowadays, an attractive strategy to improve the classical treatments is the development of multitarget-directed molecules able to synergistically interact with different enzymes and/or receptors. In addition, an interesting tool to refine personalized therapies may arise from the use of bioactive species able to modify their activity as a result of light irradiation. To this aim, we designed and synthesized a small library of cinnamic acid-inspired isomeric compounds with light modulated activity able to inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B), with remarkable selectivity over butyrylcholinesterase (BChE) and MAO-A, which have been investigated as the enzyme targets related to Alzheimer's disease (AD). The inhibitory activities were evaluated for the pure E-diastereomers and the E/Z-diastereomer mixtures, obtained upon UV irradiation. Molecular docking studies were carried out to rationalize the differences in the inhibition potency of the E and Z diastereomers of the best performing analogue 1c. Our preliminary findings may open-up the way for developing innovative multitarget photo-switch drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
- Chemistry Department, Bowling Green State University USA
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
7
|
Gerwe H, He F, Pottie E, Stove C, Decker M. Enlightening the “Spirit Molecule”: Photomodulation of the 5‐HT
2A
Receptor by a Light‐Controllable
N
,
N
‐Dimethyltryptamine Derivative. Angew Chem Int Ed Engl 2022; 61:e202203034. [PMID: 35349196 PMCID: PMC9324199 DOI: 10.1002/anie.202203034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hubert Gerwe
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food Chemistry Julius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Feng He
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food Chemistry Julius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Eline Pottie
- Laboratory of Toxicology Department of Bioanalysis Faculty of Pharmaceutical Sciences Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Christophe Stove
- Laboratory of Toxicology Department of Bioanalysis Faculty of Pharmaceutical Sciences Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food Chemistry Julius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
8
|
Laczi D, Johnstone MD, Fleming CL. Photoresponsive Small Molecule Inhibitors for the Remote Control of Enzyme Activity. Chem Asian J 2022; 17:e202200200. [PMID: 35446477 PMCID: PMC9322446 DOI: 10.1002/asia.202200200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Indexed: 12/14/2022]
Abstract
The development of new and effective therapeutics is reliant on the ability to study the underlying mechanisms of potential drug targets in live cells and multicellular systems. A persistent challenge in many drug development programmes is poor selectivity, which can obscure the mechanisms involved and lead to poorly understood modes of action. In efforts to improve our understanding of these complex processes, small molecule inhibitors have been developed in which their OFF/ON therapeutic activity can be toggled using light. Photopharmacology is devoted to using light to modulate drugs. Herein, we highlight the recent progress made towards the development of light-responsive small molecule inhibitors of selected enzymatic targets. Given the size of this field, literature from 2015 onwards has been reviewed.
Collapse
Affiliation(s)
- Dóra Laczi
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Mark D. Johnstone
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Cassandra L. Fleming
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| |
Collapse
|
9
|
Die Erhellung des “Bewusstseinsmoleküls”: Photomodulation des 5‐HT
2A
Rezeptors durch ein licht‐steuerbares N,N‐Dimethyltryptamin‐Derivat. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Scheiner M, Sink A, Hoffmann M, Vrigneau C, Endres E, Carles A, Sotriffer C, Maurice T, Decker M. Photoswitchable Pseudoirreversible Butyrylcholinesterase Inhibitors Allow Optical Control of Inhibition in Vitro and Enable Restoration of Cognition in an Alzheimer's Disease Mouse Model upon Irradiation. J Am Chem Soc 2022; 144:3279-3284. [PMID: 35138833 DOI: 10.1021/jacs.1c13492] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Sink
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Cassandre Vrigneau
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Erik Endres
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Allison Carles
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Mravec B, Budzák Š, Medved' M, Pašteka LF, Slavov C, Saßmannshausen T, Wachtveitl J, Kožíšek J, Hegedüsová L, Filo J, Cigáň M. Design of High-Performance Pyridine/Quinoline Hydrazone Photoswitches. J Org Chem 2021; 86:11633-11646. [PMID: 34323500 DOI: 10.1021/acs.joc.1c01174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of P-type photoswitches with thermal stability of the metastable form of hundreds of years that would efficiently transform using excitation wavelengths above 350 nm remains a challenge in the field of photochromism. In this regard, we designed and synthesized an extended set of 13 pyridine/quinoline hydrazones and systematically investigated the structure-property relationships, defining their kinetic and photoswitching parameters. We show that the operational wavelengths of the pyridine hydrazone structural motif can be effectively shifted toward the visible region without simultaneous loss of their high thermal stability. Furthermore, we characterized the ground-state and excited-state potential energy surfaces with quantum-chemical calculations and ultrafast transient absorption spectroscopy, which allowed us to rationalize both the thermal and photochemical reaction mechanisms of the designed hydrazones. Whereas introducing an electron-withdrawing pyridyl moiety in benzoylpyridine hydrazones leads to thermal stabilities exceeding 200 years, extended π-conjugation in naphthoylquinoline hydrazones pushes the absorption maxima toward the visible spectral region. In either case, the compounds retain highly efficient photoswitching characteristics. Our findings open a route to the rational design of a new family of hydrazone-based P-type photoswitches with high application potential in photonics or photopharmacology.
Collapse
Affiliation(s)
- Bernard Mravec
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97400 Banská Bystrica, Slovakia
| | - Miroslav Medved'
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97400 Banská Bystrica, Slovakia.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 8, 77900 Olomouc, Czech Republic
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Jozef Kožíšek
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Lea Hegedüsová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|