1
|
Kuramochi Y, Kamiya M, Ishida H. Exploring the Impact of Water Content in Solvent Systems on Photochemical CO 2 Reduction Catalyzed by Ruthenium Complexes. Molecules 2024; 29:4960. [PMID: 39459328 PMCID: PMC11510497 DOI: 10.3390/molecules29204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
To achieve artificial photosynthesis, it is crucial to develop a catalytic system for CO2 reduction using water as the electron source. However, photochemical CO2 reduction by homogeneous molecular catalysts has predominantly been conducted in organic solvents. This study investigates the impact of water content on catalytic activity in photochemical CO2 reduction in N,N-dimethylacetamide (DMA), using [Ru(bpy)3]2+ (bpy: 2,2'-bipyridine) as a photosensitizer, 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor, and two ruthenium diimine carbonyl complexes, [Ru(bpy)2(CO)2]2+ and trans(Cl)-[Ru(Ac-5Bpy-NHMe)(CO)2Cl2] (5Bpy: 5'-amino-2,2'-bipyridine-5-carboxylic acid), as catalysts. Increasing water content significantly decreased CO and formic acid production. The similar rates of decrease for both catalysts suggest that water primarily affects the formation efficiency of free one-electron-reduced [Ru(bpy)3]2+, rather than the intrinsic catalytic activity. The reduction in cage-escape efficiency with higher water content underscores the challenges in replacing organic solvents with water in photochemical CO2 reduction.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguroku, Tokyo 153-8505, Japan
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Masaya Kamiya
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Hitoshi Ishida
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita 564-8680, Osaka, Japan
| |
Collapse
|
2
|
Bento MA, Bandeira NAG, Miras HN, Moro AJ, Lima JC, Realista S, Gleeson M, Devid EJ, Brandão P, Rocha J, Martinho PN. Solar Light CO 2 Photoreduction Enhancement by Mononuclear Rhenium(I) Complexes: Characterization and Mechanistic Insights. Inorg Chem 2024; 63:18211-18222. [PMID: 39270003 DOI: 10.1021/acs.inorgchem.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The catalytic efficacy of a novel mononuclear rhenium(I) complex in CO2 reduction is remarkable, with a turnover number (TONCO) of 1517 in 3 h, significantly outperforming previous Re(I) catalysts. This complex, synthesized via a substitution reaction on an aromatic ring to form a bromo-bipyridine derivative, L1 = 2-bromo-6-(1H-pyrazol-1-yl)pyridine, and further reacting with [Re(CO)5Cl], results in the facial-tricarbonyl complex [ReL1(CO)3Cl] (1). The light green solid was obtained with an 80% yield and thoroughly characterized using cyclic voltammetry, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. Cyclic voltammetry under CO2 atmosphere revealed three distinct redox processes, suggesting the formation of new electroactive compounds. The studies on photoreduction highlighted the ability of the catalyst to reduce CO2, while NMR, FTIR, and electrospray ionization (ESI) mass spectrometry provided insights into the mechanism, revealing the formation of solvent-coordinated complexes and new species under varying conditions. Additionally, computational studies (DFT) were undertaken to better understand the electronic structure and reactivity patterns of 1, focusing on the role of the ligand, the spectroscopic features, and the redox behavior. This comprehensive approach provides insights into the intricate dynamics of CO2 photoreduction, showcasing the potential of Re(I) complexes in catalysis.
Collapse
Affiliation(s)
- Marcos A Bento
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nuno A G Bandeira
- Biosystems and Integrative Sciences Institute (BioISI), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 8.5.53─C8 Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Artur J Moro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Sciences and Technology (NOVA-FCT), 2829-516 Caparica, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Sciences and Technology (NOVA-FCT), 2829-516 Caparica, Portugal
| | - Sara Realista
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Michael Gleeson
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Edwin J Devid
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - João Rocha
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Paulo N Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Palion-Gazda J, Choroba K, Maroń AM, Malicka E, Machura B. Structural and Photophysical Trends in Rhenium(I) Carbonyl Complexes with 2,2':6',2″-Terpyridines. Molecules 2024; 29:1631. [PMID: 38611910 PMCID: PMC11013590 DOI: 10.3390/molecules29071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
This is the first comprehensive review of rhenium(I) carbonyl complexes with 2,2':6',2″-terpyridine-based ligands (R-terpy)-encompassing their synthesis, molecular features, photophysical behavior, and potential applications. Particular attention has been devoted to demonstrating how the coordination mode of 2,2':6',2″-terpyridine (terpy-κ2N and terpy-κ3N), structural modifications of terpy framework (R), and the nature of ancillary ligands (X-mono-negative anion, L-neutral ligand) may tune the photophysical behavior of Re(I) complexes [Re(X/L)(CO)3(R-terpy-κ2N)]0/+ and [Re(X/L)(CO)2(R-terpy-κ3N)]0/+. Our discussion also includes homo- and heteronuclear multicomponent systems with {Re(CO)3(R-terpy-κ2N)} and {Re(CO)2(R-terpy-κ3N)} motifs. The presented structure-property relationships are of high importance for controlling the photoinduced processes in these systems and making further progress in the development of more efficient Re-based luminophores, photosensitizers, and photocatalysts for modern technologies.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| | | | | | | | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| |
Collapse
|
4
|
Su Z, Luo Y, Shi J, Feng J, Li X, Zhang J, Su C. Manipulating the Reaction Pathway of CO 2 Photoreduction via the Microenvironment of a Re Molecular Catalyst. J Phys Chem Lett 2023; 14:3208-3215. [PMID: 36971470 DOI: 10.1021/acs.jpclett.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Re molecular complexes incorporated into two metal-organic frameworks were investigated to disclose the host-guest interaction by infrared and 1H nuclear magnetic resonance and to explore the microenvironment around the Re complex by absorption and photoluminescence spectra. ZIF-8 provides a confined space to isolated Re via an electrostatic interaction, while UiO-66 exerts a relaxed space to accessible Re via a coordination interaction. For CO2 two-electron photoreduction to CO, the turnover number of 28.6 in Re@ZIF-8 is 10-fold that of 2.7 in Re@UiO-66. The electron transfer is promoted in Re@ZIF-8 by a local electrostatic field with a cross-space pathway, whereas it is retarded in Re@UiO-66 as the solvation shell surrounding Re. In the following CO2 activation, the charged intermediate species could be stabilized in Re@ZIF-8 by spatial confinement, while Re-triethanolamine adducts prevailed in Re@UiO-66 with the accessibility of the Re complex. This work demonstrates a feasibility of diverting the CO2 activation pathway by the microenvironment of a molecular catalyst in the field of artificial photosynthesis.
Collapse
Affiliation(s)
- Zhifang Su
- School of Chemistry, Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Yucheng Luo
- School of Chemistry, Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Jianying Shi
- School of Chemistry, Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Jianxin Feng
- School of Chemistry, Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Xuan Li
- School of Chemistry, Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Jinzhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Chengyong Su
- School of Chemistry, Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| |
Collapse
|
5
|
Müller AV, Faustino LA, de Oliveira KT, Patrocinio AOT, Polo AS. Visible-Light-Driven Photocatalytic CO 2 Reduction by Re(I) Photocatalysts with N-Heterocyclic Substituents. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andressa V. Müller
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC─UFABC, Av. dos Estados 5001, 09210-580Santo André, São Paulo, Brazil
| | - Leandro A. Faustino
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia─UFU, Av. João Naves de Ávila 212, 38400-902Uberlândia, Minas Gerais, Brazil
| | - Kleber T. de Oliveira
- Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís km 235, 13565-905São Carlos, São Paulo, Brazil
| | - Antonio O. T. Patrocinio
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia─UFU, Av. João Naves de Ávila 212, 38400-902Uberlândia, Minas Gerais, Brazil
| | - André S. Polo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC─UFABC, Av. dos Estados 5001, 09210-580Santo André, São Paulo, Brazil
| |
Collapse
|
6
|
Shipp J, Parker S, Spall S, Peralta-Arriaga SL, Robertson CC, Chekulaev D, Portius P, Turega S, Buckley A, Rothman R, Weinstein JA. Photocatalytic Reduction of CO 2 to CO in Aqueous Solution under Red-Light Irradiation by a Zn-Porphyrin-Sensitized Mn(I) Catalyst. Inorg Chem 2022; 61:13281-13292. [PMID: 35960651 PMCID: PMC9446891 DOI: 10.1021/acs.inorgchem.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This work demonstrates photocatalytic CO2 reduction
by a noble-metal-free photosensitizer-catalyst system in aqueous solution
under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine
complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography,
and shown to reduce CO2 to CO following photosensitization
by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride
[Zn(TMPyP)]Cl4 (2) under 625 nm irradiation.
This is the first example of 2 employed as a photosensitizer
for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising
the electronic properties of the catalyst. The photostability of the
active Mn(I) catalyst over prolonged periods of irradiation with red
light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous
photocatalyst, working in water and under red light, illustrates further
future prospects of intrinsically photounstable Mn(I) complexes as
solar-driven catalysts in an aqueous environment. A Mn(I) bipyridyl tricarbonyl complex,
where the diimine
ligand is functionalized with water-solubilizing phosphonate ester
groups, has been prepared and is shown to catalytically convert CO2 to CO in aqueous solution following photosensitization from
a water-soluble Zn(II) porphyrin under red-light irradiation.
Collapse
Affiliation(s)
- James Shipp
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Parker
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Steven Spall
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Peter Portius
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Turega
- Department of Chemistry, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Alastair Buckley
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Rachael Rothman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
7
|
Fujita E, Grills DC, Manbeck GF, Polyansky DE. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO 2 Reduction Using Mn, Re, and Ru Catalysts. Acc Chem Res 2022; 55:616-628. [PMID: 35133133 DOI: 10.1021/acs.accounts.1c00616] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recycling of carbon dioxide to fuels and chemicals is a promising strategy for renewable energy storage. Carbon dioxide conversion can be achieved by (i) artificial photosynthesis using photoinduced electrons; (ii) electrolysis using electricity produced by photovoltaics; and (iii) thermal CO2 hydrogenation using renewable H2. The focus of our group's research is on molecular catalysts, in particular coordination complexes of transition metals (e.g., Mn, Re, and Ru), which offer versatile platforms for mechanistic studies of photo- and electrochemical CO2 reduction. The interactions of catalytic intermediates with Lewis or Brønsted acids, hydrogen-bonding moieties, solvents, cations, etc., that function as promoters or cofactors have become increasingly important for efficient catalysis. These interactions may have dramatic effects on selectivity and rates by stabilizing intermediates or lowering transition state barriers, but they are difficult to elucidate and challenging to predict. We have been carrying out experimental and theoretical studies of CO2 reduction using molecular catalysts toward addressing mechanisms of efficient CO2 reduction systems with emphasis on those containing intramolecular (or pendent) and intermolecular (solution phase) additives. This Account describes the identification of reaction intermediates produced during CO2 reduction in the presence of triethanolamine or ionic liquids, the benefits of hydrogen-bonding interactions among intermediates or cofactors, and the complications of pendent phenolic donors/phenoxide bases under electrochemical conditions.Triethanolamine (TEOA) is a common sacrificial electron donor for photosensitizer excited state reductive quenching and has a long history of use in photocatalytic CO2 reduction. It also functions as a Brønsted base in conjunction with more potent sacrificial electron donors, such as 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH). Deprotonation of the BIH•+ cation radical promotes irreversible photoinduced electron transfer by preventing charge recombination. Despite its wide use, most research to date has not considered the broader reactions of TEOA, including its direct interaction with CO2 or its influence on catalytic intermediates. We found that in acetonitrile, TEOA captures CO2 in the form of a zwitterionic adduct without any metal catalyst. In the presence of ruthenium carbonyl catalysts bearing α-diimine ligands, it participates in metal hydride formation, accelerates hydride transfer to CO2 to form the bound formate intermediate, and assists in the dissociation of formate anion from the catalyst ( J. Am. Chem. Soc. 2020, 142, 2413-2428).Hydrogen bonding and acid/base promoters are understood to interact with key catalytic intermediates, such as the metallocarboxylate or metallocarboxylic acid during CO2 reduction. The former is a high energy species, and hydrogen-bonding or Lewis acid-stabilization are beneficial. We have found that imidazolium-based ionic liquid cations can stabilize the doubly reduced form of the [ReCl(bpy)(CO)3] (bpy = 2,2'-bipyridine) electrocatalyst through both hydrogen-bonding and π-π interactions, resulting in CO2 reduction occurring at a more positive potential with a higher catalytic current ( J. Phys. Chem. Lett. 2014, 5, 2033-2038). Hydrogen bonding interactions between Lewis basic methoxy groups in the second coordination sphere of a Mn-based catalyst and the OH group of the Mn-COOH intermediate in the presence of a Brønsted acid were also found to promote C-(OH) bond cleavage, enabling access to a low-energy protonation-first pathway for CO2 reduction ( J. Am. Chem. Soc. 2017, 139, 2604-2618).The kinetics of forming the metallocarboxylic acid can be enhanced by internal acids, and its proton-induced C-OH bond cleavage to the metallocarbonyl and H2O is often the rate-limiting step. Therefore, proton movement organized by pendent hydrogen-bonding networks may also accelerate this step. In contrast, during electrolysis, OH groups in the second coordination sphere are deprotonated to the oxyanions, which deter catalytic CO2 reduction by directly binding CO2 to form the carbonate or by making an M-O bond in competition with CO2 binding ( Inorg. Chem. 2016, 55, 4582-4594). Our results emphasize that detailed mechanistic research is critical in discovering the design principles for improved catalysts.
Collapse
Affiliation(s)
- Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
8
|
Spear A, Schuarca RL, Bond JQ, Korter TM, Zubieta J, Doyle RP. Photocatalytic turnover of CO 2 under visible light by [Re(CO) 3(1-(1,10) phenanthroline-5-(4-nitro-naphthalimide))Cl] in tandem with the sacrificial donor BIH. RSC Adv 2022; 12:5080-5084. [PMID: 35425589 PMCID: PMC8981247 DOI: 10.1039/d1ra08261b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Optimized photocatalytic conversion of CO2 requires new potent catalysts that can absorb visible light. The photocatalytic reduction of CO2 using rhenium(i) has been demonstrated but suffers from low turnover. Herein, we describe a [Re(CO)3(1-(1,10)phenanthroline-5-(4-nitro-naphthalimide))Cl] photocatalyst, which when combined with the sacrificial donor 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole, results in selective production of formic acid and a high turnover number of 533 and turnover frequency of 356 h-1. Single-crystal X-ray diffraction and DFT studies are also discussed.
Collapse
Affiliation(s)
- Alyssa Spear
- Department of Chemistry, Syracuse University Syracuse NY 13244 USA
| | - Robson L Schuarca
- Department of Biomedical and Chemical Engineering, Syracuse University Syracuse NY 13244 USA
| | - Jesse Q Bond
- Department of Biomedical and Chemical Engineering, Syracuse University Syracuse NY 13244 USA
| | - Timothy M Korter
- Department of Chemistry, Syracuse University Syracuse NY 13244 USA
| | - Jon Zubieta
- Department of Chemistry, Syracuse University Syracuse NY 13244 USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University Syracuse NY 13244 USA
| |
Collapse
|
9
|
Back C, Seo Y, Choi S, Choe MS, Lee D, Baeg JO, Son HJ, Kang SO. Secondary Coordination Effect on Monobipyridyl Ru(II) Catalysts in Photochemical CO 2 Reduction: Effective Proton Shuttle of Pendant Brønsted Acid/Base Sites (OH and N(CH 3) 2) and Its Mechanistic Investigation. Inorg Chem 2021; 60:14151-14164. [PMID: 34473480 DOI: 10.1021/acs.inorgchem.1c01559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the incorporation of pendant Brønsted acid/base sites in the secondary coordination sphere is a promising and effective strategy to increase the catalytic performance and product selectivity in organometallic catalysis for CO2 reduction, the control of product selectivity still faces a great challenge. Herein, we report two new trans(Cl)-[Ru(6-X-bpy)(CO)2Cl2] complexes functionalized with a saturated ethylene-linked functional group (bpy = 2,2'-bipyridine; X = -(CH2)2-OH or -(CH2)2-N(CH3)2) at the ortho(6)-position of bpy ligand, which are named Ru-bpyOH and Ru-bpydiMeN, respectively. In the series of photolysis experiments, compared to nontethered case, the asymmetric attachment of tethering ligand to the bpy ligand led to less efficient but more selective formate production with inactivation of CO2-to-CO conversion route during photoreaction. From a series of in situ FTIR analyses, it was found that the Ru-formate intermediates are stabilized by a highly probable hydrogen bonding between pendent proton donors (-diMeN+H or -OH) and the oxygen atom of metal-bound formate (RuI-OCHO···H-E-(CH2)2-, E = O or diMeN+). Under such conformation, the liberation of formate from the stabilized RuI-formate becomes less efficient compared to the nontethered case, consequently lowering the CO2-to-formate conversion activities during photoreaction. At the same time, such stabilization of Ru-formate species prevents the dehydration reaction route (η1-OCHO → η1-COOH on Ru metal) which leads toward the generation of Ru-CO species (key intermediate for CO production), eventually leading to the reduction of CO2-to-CO conversion activity.
Collapse
Affiliation(s)
- Changhyun Back
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Yunjeong Seo
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
10
|
Zhang X, Yamauchi K, Sakai K. Earth-Abundant Photocatalytic CO2 Reduction by Multielectron Chargeable Cobalt Porphyrin Catalysts: High CO/H2 Selectivity in Water Based on Phase Mismatch in Frontier MO Association. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xian Zhang
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|