1
|
Sande R, Godad A, Doshi G. Zebrafish Experimental Animal Models for AD: A Comprehensive Review. Curr Rev Clin Exp Pharmacol 2024; 19:295-311. [PMID: 38284707 DOI: 10.2174/0127724328279684240104094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
AD disease (AD) is a multifaceted and intricate neurodegenerative disorder characterized by intracellular neurofibrillary tangle (NFT) formation and the excessive production and deposition of Aβ senile plaques. While transgenic AD models have been found instrumental in unravelling AD pathogenesis, they involve cost and time constraints during the preclinical phase. Zebrafish, owing to their simplicity, well-defined behavioural patterns, and relevance to neurodegenerative research, have emerged as a promising complementary model. Zebrafish possess glutaminergic and cholinergic pathways implicated in learning and memory, actively contributing to our understanding of neural transmission processes. This review sheds light on the molecular mechanisms by which various neurotoxic agents, including okadaic acid (OKA), cigarette smoke extract, metals, and transgenic zebrafish models with genetic similarities to AD patients, induce cognitive impairments and neuronal degeneration in mammalian systems. These insights may facilitate the identification of effective neurotoxic agents for replicating AD pathogenesis in the zebrafish brain. In this comprehensive review, the pivotal role of zebrafish models in advancing our comprehension of AD is emphasized. These models hold immense potential for shaping future research directions and clinical interventions, ultimately contributing to the development of novel AD therapies.
Collapse
Affiliation(s)
- Ruksar Sande
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
2
|
Audira G, Huang JC, Chen KHC, Kurnia KA, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD, Yen CY. A comprehensive painkillers screening by assessing zebrafish behaviors after caudal fin amputation. Biomed Pharmacother 2023; 168:115641. [PMID: 37806085 DOI: 10.1016/j.biopha.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, the usage of zebrafish for pain studies has increased in the past years, especially due to its robust pain-stimulated behaviors. Fin amputation has been demonstrated to induce a noxious response in zebrafish. However, based on the prior study, although lidocaine, the most used painkiller in zebrafish, has been shown to ameliorate amputated zebrafish behaviors, it still causes some prolonged effects. Therefore, alternative painkillers are always needed to improve the treatment quality of fin-amputated zebrafish. Here, the effects of several analgesics in recovering zebrafish behaviors post-fin amputation were evaluated. From the results, five painkillers were found to have potentially beneficial effects on amputated fish behaviors. Overall, these results aligned with their binding energy level to target proteins of COX-1 and COX-2. Later, based on their sub-chronic effects on zebrafish survivability, indomethacin, and diclofenac were further studied. This combination showed a prominent effect in recovering zebrafish behaviors when administered orally or through waterborne exposure, even with lower concentrations. Next, based on the ELISA in zebrafish brain tissue, although some changes were found in the treated group, no statistical differences were observed in most of the tested biomarkers. However, since heatmap clustering showed a similar pattern between biochemical and behavior endpoints, the minor changes in each biomarker may be sufficient in changing the fish behaviors.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| | - Cheng-Yo Yen
- Department of Orthopedics, E-Da Cancer Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, No.1, E-Da Road, Yan-Chau District, 824, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Jing Z, Li Y, Zhang H, Chen T, Yu J, Xu X, Zou Y, Wang X, Xiang K, Gong X, He P, Fu Y, Ren M, Ji P, Yang S. Tobacco toxins induce osteoporosis through ferroptosis. Redox Biol 2023; 67:102922. [PMID: 37826866 PMCID: PMC10571034 DOI: 10.1016/j.redox.2023.102922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Clinical epidemiological studies have confirmed that tobacco smoking disrupts bone homeostasis and is an independent risk factor for the development of osteoporosis. The low viability and inferior osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) are important etiologies of osteoporosis. However, few basic studies have elucidated the specific mechanisms that tobacco toxins devastated BMSCs and consequently induced or exacerbated osteoporosis. Herein, our clinical data showed the bone mineral density (BMD) values of femoral neck in smokers were significantly lower than non-smokers, meanwhile cigarette smoke extract (CSE) exposure led to a significant decrease of BMD in rats and dysfunction of rat BMSCs (rBMSCs). Transcriptomic analysis and phenotype experiments suggested that the ferroptosis pathway was significantly activated in CSE-treated rBMSCs. Accumulated intracellular reactive oxygen species activated AMPK signaling, furtherly promoted NCOA4-mediated ferritin-selective autophagic processes, increased labial iron pool and lipid peroxidation deposition, and ultimately led to ferroptosis in rBMSCs. Importantly, in vivo utilization of ferroptosis and ferritinophagy inhibitors significantly alleviated BMD loss in CSE-exposed rats. Our study innovatively reveals the key mechanism of smoking-related osteoporosis, and provides a possible route targeting on the perspective of BMSC ferroptosis for future prevention and treatment of smoking-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Zheng Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinrui Yu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xinxin Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, China
| | - Xu Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerui Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping He
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yiru Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mingxing Ren
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
4
|
Chavez JR, Yao W, Dulin H, Castellanos J, Xu D, Hai R. Modeling the effects of cigarette smoke extract on influenza B virus infections in mice. Front Immunol 2023; 14:1083251. [PMID: 37033954 PMCID: PMC10076604 DOI: 10.3389/fimmu.2023.1083251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Influenza B virus (IBV) is a major respiratory viral pathogen. Due to a lack of pandemic potential for IBV, there is a lag in research on IBV pathology and immunological responses compared to IAV. Therefore, the impact of various lifestyle and environmental factors on IBV infections, such as cigarette smoking (CS), remains elusive. Despite the increased risk and severity of IAV infections with CS, limited information exists on the impact of CS on IBV infections due to the absence of suitable animal models. To this end, we developed an animal model system by pre-treating mice for two weeks with cigarette smoke extract (CSE), then infected them with IBV and monitored the resulting pathological, immunological, and virological effects. Our results reveal that the CSE treatment decreased IBV specific IgG levels yet did not change viral replication in the upper airway/the lung, and weight recovery post infection. However, higher concentrations of CSE did result in higher mortality post infection. Together, this suggests that CS induced inflammation coupled with IBV infection resulted in exacerbated disease outcome.
Collapse
Affiliation(s)
- Jerald R. Chavez
- Department of Microbiology and Plant-pathology, University of California, Riverside, Riverside, CA, United States
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Wangyuan Yao
- Department of Microbiology and Plant-pathology, University of California, Riverside, Riverside, CA, United States
| | - Harrison Dulin
- Department of Microbiology and Plant-pathology, University of California, Riverside, Riverside, CA, United States
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Jasmine Castellanos
- Department of Microbiology and Plant-pathology, University of California, Riverside, Riverside, CA, United States
| | - Duo Xu
- Department of Microbiology and Plant-pathology, University of California, Riverside, Riverside, CA, United States
| | - Rong Hai
- Department of Microbiology and Plant-pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater 2023; 155:154-166. [PMID: 36435443 DOI: 10.1016/j.actbio.2022.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination. Moreover, the photosynthetic hydrogel showed high biocompatibility in vitro and in vivo, and the capacity to sustain the metabolic oxygen requirements of zebrafish larvae and skin explants. In addition, the photosynthetic dressings were evaluated in 20 healthy human volunteers following the ISO-10993-10-2010 showing no skin irritation, mechanical stability of the dressings, and survival of the photosynthetic microalgae. Finally, hydrogels were also loaded with genetically engineered microalgae to release human VEGF, or pre-loaded with antibiotics, showing sustained release of both bioactive molecules. Overall, this work shows that photosynthetic hydrogels represent a feasible approach for the local delivery of oxygen and other bioactive molecules to promote wound healing. STATEMENT OF SIGNIFICANCE: As oxygen plays a key role in almost every step of the tissue regeneration process, the development of oxygen delivering therapies represents an active field of research, where photosynthetic biomaterials have risen as a promising approach for wound healing. Therefore, in this work a photosynthetic alginate hydrogel-based wound dressing containing C. reinhardtii microalgae was developed and validated in healthy skin of human volunteers. Moreover, hydrogels were modified to additionally release other bioactive molecules such as recombinant VEGF or antibiotics. The present study provides key scientific data to support the use of photosynthetic hydrogels as customizable dressings to promote wound healing.
Collapse
|
6
|
Thawkar BS, Kaur G. Zebrafish as a Promising Tool for Modeling Neurotoxin-Induced Alzheimer's Disease. Neurotox Res 2021; 39:949-965. [PMID: 33687726 DOI: 10.1007/s12640-021-00343-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 12/01/2022]
Abstract
Drug discovery and development for Alzheimer's disease (AD) are complex and challenging due to the higher failure rate in the drug development process. The overproduction and deposition of Aβ senile plaque and intracellular neurofibrillary tangle (NFT) formation are well-recognized diagnostic hallmarks of AD. Numerous transgenic models of Alzheimer's disease have restrictions on cost-effectiveness and time in the preclinical setup. Zebrafish has emerged as an excellent complementary model for neurodegenerative research due to simpler organisms with robust, clearly visible behavior forms. Glutaminergic and cholinergic pathways responsible for learning and memory are present in zebrafish and actively participate in the transmission process. Therefore, it is imperative to study neurotoxic agents' mechanisms that induce dysfunction of memory, learning, and neurons in the zebrafish. This review illustrates the in-depth molecular mechanism of several neurotoxic agents such as okadaic acid, cigarette smoke extract, and metals to produce cognitive deficits or neurodegeneration similar to mammals. These updates would determine an ideal and effective neurotoxic agent for producing AD pathophysiology in the zebrafish brain for preclinical screening.
Collapse
Affiliation(s)
- Baban S Thawkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), 400056, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), 400056, Mumbai, India.
| |
Collapse
|
7
|
Echeazarra L, Hortigón-Vinagre MP, Casis O, Gallego M. Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry. Front Physiol 2021; 11:607860. [PMID: 33519514 PMCID: PMC7838705 DOI: 10.3389/fphys.2020.607860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
The electrophysiological behavior of the zebrafish heart is very similar to that of the human heart. In fact, most of the genes that codify the channels and regulatory proteins required for human cardiac function have their orthologs in the zebrafish. The high fecundity, small size, and easy handling make the zebrafish embryos/larvae an interesting candidate to perform whole animal experiments within a plate, offering a reliable and low-cost alternative to replace rodents and larger mammals for the study of cardiac physiology and pathology. The employment of zebrafish embryos/larvae has widened from basic science to industry, being of particular interest for pharmacology studies, since the zebrafish embryo/larva is able to recapitulate a complete and integrated view of cardiac physiology, missed in cell culture. As in the human heart, IKr is the dominant repolarizing current and it is functional as early as 48 h post fertilization. Finally, genome editing techniques such as CRISPR/Cas9 facilitate the humanization of zebrafish embryos/larvae. These techniques allow one to replace zebrafish genes by their human orthologs, making humanized zebrafish embryos/larvae the most promising in vitro model, since it allows the recreation of human-organ-like environment, which is especially necessary in cardiac studies due to the implication of dynamic factors, electrical communication, and the paracrine signals in cardiac function.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria Pura Hortigón-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética>, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Gallego
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|