1
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
2
|
Aghamiri SS, Puniya BL, Amin R, Helikar T. A multiscale mechanistic model of human dendritic cells for in-silico investigation of immune responses and novel therapeutics discovery. Front Immunol 2023; 14:1112985. [PMID: 36993954 PMCID: PMC10040975 DOI: 10.3389/fimmu.2023.1112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique ability to mediate inflammatory responses of the immune system. Given the critical role of DCs in shaping immunity, they present an attractive avenue as a therapeutic target to program the immune system and reverse immune disease disorders. To ensure appropriate immune response, DCs utilize intricate and complex molecular and cellular interactions that converge into a seamless phenotype. Computational models open novel frontiers in research by integrating large-scale interaction to interrogate the influence of complex biological behavior across scales. The ability to model large biological networks will likely pave the way to understanding any complex system in more approachable ways. We developed a logical and predictive model of DC function that integrates the heterogeneity of DCs population, APC function, and cell-cell interaction, spanning molecular to population levels. Our logical model consists of 281 components that connect environmental stimuli with various layers of the cell compartments, including the plasma membrane, cytoplasm, and nucleus to represent the dynamic processes within and outside the DC, such as signaling pathways and cell-cell interactions. We also provided three sample use cases to apply the model in the context of studying cell dynamics and disease environments. First, we characterized the DC response to Sars-CoV-2 and influenza co-infection by in-silico experiments and analyzed the activity level of 107 molecules that play a role in this co-infection. The second example presents simulations to predict the crosstalk between DCs and T cells in a cancer microenvironment. Finally, for the third example, we used the Kyoto Encyclopedia of Genes and Genomes enrichment analysis against the model's components to identify 45 diseases and 24 molecular pathways that the DC model can address. This study presents a resource to decode the complex dynamics underlying DC-derived APC communication and provides a platform for researchers to perform in-silico experiments on human DC for vaccine design, drug discovery, and immunotherapies.
Collapse
Affiliation(s)
| | | | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Gundry M, Sankaran VG. Hacking hematopoiesis - emerging tools for examining variant effects. Dis Model Mech 2023; 16:dmm049857. [PMID: 36826849 PMCID: PMC9983777 DOI: 10.1242/dmm.049857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Hematopoiesis is a continuous process of blood and immune cell production. It is orchestrated by thousands of gene products that respond to extracellular signals by guiding cell fate decisions to meet the needs of the organism. Although much of our knowledge of this process comes from work in model systems, we have learned a great deal from studies on human genetic variation. Considerable insight has emerged from studies on presumed monogenic blood disorders, which continue to provide key insights into the mechanisms critical for hematopoiesis. Furthermore, the emergence of large-scale biobanks and cohorts has uncovered thousands of genomic loci associated with blood cell traits and diseases. Some of these blood cell trait-associated loci act as modifiers of what were once thought to be monogenic blood diseases. However, most of these loci await functional validation. Here, we discuss the validation bottleneck and emerging methods to more effectively connect variant to function. In particular, we highlight recent innovations in genome editing, which have paved the path forward for high-throughput functional assessment of loci. Finally, we discuss existing barriers to progress, including challenges in manipulating the genomes of primary hematopoietic cells.
Collapse
Affiliation(s)
- Michael Gundry
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
5
|
Lellahi SM, Azeem W, Hua Y, Gabriel B, Paulsen Rye K, Reikvam H, Kalland KH. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol 2023; 13:1058963. [PMID: 36713392 PMCID: PMC9880532 DOI: 10.3389/fimmu.2022.1058963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) have attracted increasing attention as alternatives to monocyte-derived dendritic cells (moDCs) in cancer immunotherapy. Use of cDCs for therapy has been hindered by their low numbers in peripheral blood. In the present study, we found that extensive spontaneous apoptosis and cDC death in culture within 24hrs represent an additional challenge. Different media conditions that maintain cDC viability and function were investigated. CD141+ cDC1 and CD1c+ cDC2 were isolated from healthy blood donor buffy coats. Low viabilities were found with CellGenix DC, RPMI-1640, and X-VIVO 15 standard culture media and with several supplements at 24hrs and 48hrs. Among multiple factors it was found that GM-CSF improved both cDC1 and cDC2 viability, whereas Flt3-L and IL-4 only increased viability of cDC1 and cDC2, respectively. Combinations of these three cytokines improved viability of both cDCs further, both at 24hrs and 48hrs time points. Although these cytokines have been extensively investigated for their role in myeloid cell differentiation, and are also used clinically, their effects on mature cDCs remain incompletely known, in particular effects on pro-inflammatory or tolerogenic cDC features. HLA-DR, CD80, CD83, CD86, PD-L1 and PD-L2 cDC membrane expressions were relatively little affected by GM-CSF, IL-4 and Flt3-L cytokine supplements compared to the strong induction following Toll-like receptor (TLR) stimulation for 24hrs. With minor exceptions the three cytokines appeared to be permissive to the TLR-induced marker expression. Allogeneic mixed leukocyte reaction showed that the cytokines promoted T-cell proliferation and revealed a potential to boost both Th1 and Th2 polarizing cytokines. GM-CSF and Flt3-L and their combination improved the capability of cDC1 for dextran uptake, while in cDC2, dextran capture was improved by GM-CSF. The data suggest that GM-CSF, IL-4 and Flt3-L and combinations might be beneficial for DC viability and function in vitro. Limited viability of cDCs could be a confounding variable experimentally and in immunotherapy.
Collapse
Affiliation(s)
- Seyed Mohammad Lellahi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Helse Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Gabriel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|