1
|
Zhang M, Tian M, Weng Z, Yang Y, Pan N, Shen S, Zhao H, Du H, Qu C, Yin N. Genome-Wide Identification Analysis of the 4-Coumarate: Coa Ligase (4CL) Gene Family in Brassica U's Triangle Species and Its Potential Role in the Accumulation of Flavonoids in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2025; 14:714. [PMID: 40094609 PMCID: PMC11902127 DOI: 10.3390/plants14050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
4-Coumarate: CoA ligase (4CL) is a key branch point enzyme at the end of the phenylpropanoid metabolic pathway. It regulates the synthesis of various metabolites and participates in plant growth and development by catalyzing the formation of CoA ester compounds. However, 4CL family members have not been identified and analyzed among U's triangle species in Brassica. In this study, 53 4CL genes were identified in Brassica U's triangle species and divided into 4 groups (group I, II, III and IV) according to phylogenetic relationship. Based on phylogenetics, gene structure, conserved motifs, chromosome localization and collinearity analysis, 4CLs were relatively conserved in the evolution of Brassica U's triangle species. The promoter region contains a large number of cis-acting elements, implying the functional diversity of 4CLs. Further combining transcriptome data and reverse transcription quantitative PCR (RT-qPCR), we found that Bna4CLs have tissue specificity and can not only respond to exogenous phytohormone changes but also regulate the flavonoid biosynthetic pathway in the yellow- and black-seeded B. napus. Our results complement the lack of research on the 4CL gene family in Brassica, clarify the sequence characteristics and functional diversity of these genes and lay a foundation for further exploration of 4CL genes in response to abiotic stress and regulation of seed coat flavonoid accumulation.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengjiao Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ziwuyun Weng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yaping Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nian Pan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
2
|
Goldfarb T, Kodali V, Pujar S, Brover V, Robbertse B, Farrell C, Oh DH, Astashyn A, Ermolaeva O, Haddad D, Hlavina W, Hoffman J, Jackson J, Joardar V, Kristensen D, Masterson P, McGarvey K, McVeigh R, Mozes E, Murphy M, Schafer S, Souvorov A, Spurrier B, Strope P, Sun H, Vatsan A, Wallin C, Webb D, Brister J, Hatcher E, Kimchi A, Klimke W, Marchler-Bauer A, Pruitt K, Thibaud-Nissen F, Murphy T. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res 2025; 53:D243-D257. [PMID: 39526381 PMCID: PMC11701664 DOI: 10.1093/nar/gkae1038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Reference sequences and annotations serve as the foundation for many lines of research today, from organism and sequence identification to providing a core description of the genes, transcripts and proteins found in an organism's genome. Interpretation of data including transcriptomics, proteomics, sequence variation and comparative analyses based on reference gene annotations informs our understanding of gene function and possible disease mechanisms, leading to new biomedical discoveries. The Reference Sequence (RefSeq) resource created at the National Center for Biotechnology Information (NCBI) leverages both automatic processes and expert curation to create a robust set of reference sequences of genomic, transcript and protein data spanning the tree of life. RefSeq continues to refine its annotation and quality control processes and utilize better quality genomes resulting from advances in sequencing technologies as well as RNA-Seq data to produce high-quality annotated genomes, ortholog predictions across more organisms and other products that are easily accessible through multiple NCBI resources. This report summarizes the current status of the eukaryotic, prokaryotic and viral RefSeq resources, with a focus on eukaryotic annotation, the increase in taxonomic representation and the effect it will have on comparative genomics. The RefSeq resource is publicly accessible at https://www.ncbi.nlm.nih.gov/refseq.
Collapse
Affiliation(s)
- Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
- Division of Extramural Programs, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Dong-Ha Oh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Alexander Astashyn
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Olga Ermolaeva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Wratko Hlavina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - John D Jackson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Vinita S Joardar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - David Kristensen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Kelly M McGarvey
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Richard McVeigh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Eyal Mozes
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Michael R Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Susan S Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Alexander Souvorov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Brett Spurrier
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Pooja K Strope
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Hanzhen Sun
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Anjana R Vatsan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Craig Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Eneida Hatcher
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Avi Kimchi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Rolo D, Sandoval-Ibáñez O, Thiele W, Schöttler MA, Gerlach I, Zoschke R, Schwartzmann J, Meyer EH, Bock R. CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1) is a photosystem I assembly factor in Arabidopsis. THE PLANT CELL 2024; 36:4179-4211. [PMID: 38382089 PMCID: PMC11449006 DOI: 10.1093/plcell/koae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Photosystem I (PSI) forms a large macromolecular complex of ∼580 kDa that resides in the thylakoid membrane and mediates photosynthetic electron transfer. PSI is composed of 18 protein subunits and nearly 200 co-factors. The assembly of the complex in thylakoid membranes requires high spatial and temporal coordination, and is critically dependent on a sophisticated assembly machinery. Here, we report and characterize CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1), a PSI assembly factor in Arabidopsis (Arabidopsis thaliana). The CEPA1 gene was identified bioinformatically as being co-expressed with known PSI assembly factors. Disruption of the CEPA1 gene leads to a pale phenotype and retarded plant development but does not entirely abolish photoautotrophy. Biophysical and biochemical analyses revealed that the phenotype is caused by a specific defect in PSI accumulation. We further show that CEPA1 acts at the post-translational level and co-localizes with PSI in nonappressed thylakoid membranes. In native gels, CEPA1 co-migrates with thylakoid protein complexes, including putative PSI assembly intermediates. Finally, protein-protein interaction assays suggest cooperation of CEPA1 with the PSI assembly factor PHOTOSYSTEM I ASSEMBLY3 (PSA3). Together, our data support an important but nonessential role of CEPA1 in PSI assembly.
Collapse
Affiliation(s)
- David Rolo
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joram Schwartzmann
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
Yuan S, Yang C, Zheng B, Ni J, Zhou K, Qian M, Wu H. Genome-Wide Identification and Expression Analysis of GST Genes during Light-Induced Anthocyanin Biosynthesis in Mango ( Mangifera indica L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2726. [PMID: 39409596 PMCID: PMC11479026 DOI: 10.3390/plants13192726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Anthocyanins are important secondary metabolites contributing to the red coloration of fruits, the biosynthesis of which is significantly affected by light. Glutathione S-transferases (GSTs) play critical roles in the transport of anthocyanins from the cytosol to the vacuole. Despite their importance, GST genes in mango have not been extensively characterized. In this study, 62 mango GST genes were identified and further divided into six subfamilies. MiGSTs displayed high similarity in their exon/intron structure and motif and domain composition within the same subfamilies. The mango genome harbored eleven pairs of segmental gene duplications and ten sets of tandemly duplicated genes. Orthologous analysis identified twenty-nine, seven, thirty-four, and nineteen pairs of orthologous genes among mango MiGST genes and their counterparts in Arabidopsis, rice, citrus, and bayberry, respectively. Tissue-specific expression profiling highlighted tissue-specific expression patterns for MiGST genes. RNA-seq and qPCR analyses revealed elevated expression levels of seven MiGSTs including MiDHAR1, MiGSTU7, MiGSTU13, MiGSTU21, MiGSTF3, MiGSTF8, and MiGSTF9 during light-induced anthocyanin accumulation in mango. This study establishes a comprehensive genetic framework of MiGSTs in mango fruit and their potential roles in regulating anthocyanin accumulation, which is helpful in developing GST-derived molecular markers and speeding up the process of breeding new red-colored mango cultivars.
Collapse
Affiliation(s)
- Shiqing Yuan
- Sanya Institute of Breeding and Multiplication & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (S.Y.); (C.Y.); (K.Z.)
| | - Chengkun Yang
- Sanya Institute of Breeding and Multiplication & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (S.Y.); (C.Y.); (K.Z.)
| | - Bin Zheng
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China;
| | - Junbei Ni
- Hainan Institute of Zhejiang University, Sanya 572000, China;
| | - Kaibing Zhou
- Sanya Institute of Breeding and Multiplication & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (S.Y.); (C.Y.); (K.Z.)
| | - Minjie Qian
- Sanya Institute of Breeding and Multiplication & Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (S.Y.); (C.Y.); (K.Z.)
| | - Hongxia Wu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China;
| |
Collapse
|
5
|
Yanarella CF, Fattel L, Lawrence-Dill CJ. Genome-wide association studies from spoken phenotypic descriptions: a proof of concept from maize field studies. G3 (BETHESDA, MD.) 2024; 14:jkae161. [PMID: 39099140 PMCID: PMC11373645 DOI: 10.1093/g3journal/jkae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 08/06/2024]
Abstract
We present a novel approach to genome-wide association studies (GWAS) by leveraging unstructured, spoken phenotypic descriptions to identify genomic regions associated with maize traits. Utilizing the Wisconsin Diversity panel, we collected spoken descriptions of Zea mays ssp. mays traits, converting these qualitative observations into quantitative data amenable to GWAS analysis. First, we determined that visually striking phenotypes could be detected from unstructured spoken phenotypic descriptions. Next, we developed two methods to process the same descriptions to derive the trait plant height, a well-characterized phenotypic feature in maize: (1) a semantic similarity metric that assigns a score based on the resemblance of each observation to the concept of 'tallness' and (2) a manual scoring system that categorizes and assigns values to phrases related to plant height. Our analysis successfully corroborated known genomic associations and uncovered novel candidate genes potentially linked to plant height. Some of these genes are associated with gene ontology terms that suggest a plausible involvement in determining plant stature. This proof-of-concept demonstrates the viability of spoken phenotypic descriptions in GWAS and introduces a scalable framework for incorporating unstructured language data into genetic association studies. This methodology has the potential not only to enrich the phenotypic data used in GWAS and to enhance the discovery of genetic elements linked to complex traits but also to expand the repertoire of phenotype data collection methods available for use in the field environment.
Collapse
Affiliation(s)
- Colleen F Yanarella
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Leila Fattel
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Carolyn J Lawrence-Dill
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Zhou H, Wang Y, Wang X, Cheng R, Zhang H, Yang L. Genome-wide characterization of DELLA gene family in blueberry (Vaccinium darrowii) and their expression profiles in development and response to abiotic stress. BMC Genomics 2024; 25:815. [PMID: 39210263 PMCID: PMC11360860 DOI: 10.1186/s12864-024-10721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The DELLA proteins, a class of GA signaling repressors, belong to the GRAS family of plant-specific nuclear proteins. Members of DELLA gene family encode transcriptional regulators with diverse functions in plant development and abiotic stress responses. To date, DELLAs have been identified in various plant species, such as Arabidopsis thaliana, Malus domestica, Populus trichocarpa, and other land plants. Most information of DELLA family genes was obtained from A. thaliana, whereas little is known about the DELLA gene family in blueberry. RESULTS In this study, we identified three DELLA genes in blueberry (Vaccinium darrowii, VdDELLA) and provided a complete overview of VdDELLA gene family, describing chromosome localization, protein properties, conserved domain, motif organization, and phylogenetic analysis. Three VdDELLA members, containing two highly conserved DELLA domain and GRAS domain, were distributed across three chromosomes. Additionally, cis-acting elements analysis indicated that VdDELLA genes might play a critical role in blueberry developmental processes, hormone, and stress responses. Expression analysis using quantitative real-time PCR (qRT-PCR) revealed that all of three VdDELLA genes were differentially expressed across various tissues. VdDELLA2 was the most highly expressed VdDELLA in all denoted tissues, with a highest expression in mature fruits. In addition, all of the three VdDELLA genes actively responded to diverse abiotic stresses. Based on qRT-PCR analysis, VdDELLA2 might act as a key regulator in V. darrowii in response to salt stress, whereas VdDELLA1 and VdDELLA2 might play an essential role in cold stress response. Under drought stress, all of three VdDELLA genes were involved in mediating drought response. Furthermore, their transiently co-localization with nuclear markers in A. thaliana protoplasts demonstrated their transcriptional regulator roles. CONCLUSIONS In this study, three VdDELLA genes were identified in V. darrowii genome. Three VdDELLA genes were closely related to the C. moschata DELLA genes, S. lycopersicum DELLA genes, and M. domestica DELLA genes, respectively, indicating their similar biological functions. Expression analysis indicated that VdDELLA genes were highly efficient in blueberry fruit development. Expression patterns under different stress conditions revealed the differentially expressed VdDELLA genes responding to salt, drought, and cold stress. Overall, these results enrich our understanding of evolutionary relationship and potential functions of VdDELLA genes, which provide valuable information for further studies on genetic improvement of the plant yield and plant resistance.
Collapse
Affiliation(s)
- Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, China.
| | - Yanwen Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Xinyu Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Rui Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, China.
| |
Collapse
|
7
|
Reiser L, Bakker E, Subramaniam S, Chen X, Sawant S, Khosa K, Prithvi T, Berardini TZ. The Arabidopsis Information Resource in 2024. Genetics 2024; 227:iyae027. [PMID: 38457127 PMCID: PMC11075553 DOI: 10.1093/genetics/iyae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Since 1999, The Arabidopsis Information Resource (www.arabidopsis.org) has been curating data about the Arabidopsis thaliana genome. Its primary focus is integrating experimental gene function information from the peer-reviewed literature and codifying it as controlled vocabulary annotations. Our goal is to produce a "gold standard" functional annotation set that reflects the current state of knowledge about the Arabidopsis genome. At the same time, the resource serves as a nexus for community-based collaborations aimed at improving data quality, access, and reuse. For the past decade, our work has been made possible by subscriptions from our global user base. This update covers our ongoing biocuration work, some of our modernization efforts that contribute to the first major infrastructure overhaul since 2011, the introduction of JBrowse2, and the resource's role in community activities such as organizing the structural reannotation of the genome. For gene function assessment, we used gene ontology annotations as a metric to evaluate: (1) what is currently known about Arabidopsis gene function and (2) the set of "unknown" genes. Currently, 74% of the proteome has been annotated to at least one gene ontology term. Of those loci, half have experimental support for at least one of the following aspects: molecular function, biological process, or cellular component. Our work sheds light on the genes for which we have not yet identified any published experimental data and have no functional annotation. Drawing attention to these unknown genes highlights knowledge gaps and potential sources of novel discoveries.
Collapse
|
8
|
Li G, Manzoor MA, Wang G, Huang S, Ding X, Abdullah M, Zhang M, Song C. Comparative analysis of POD genes and their expression under multiple hormones in Pyrus bretschenedri. BMC Genom Data 2024; 25:41. [PMID: 38711007 PMCID: PMC11075270 DOI: 10.1186/s12863-024-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xiaoyuan Ding
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia
| | - Ming Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Cheng Song
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
9
|
Wu S, Da L, Xiao Q, Pan Q, Zhang J, Yang J. ASAP: a platform for gene functional analysis in Angelica sinensis. BMC Genomics 2024; 25:96. [PMID: 38262929 PMCID: PMC10804808 DOI: 10.1186/s12864-024-09971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Angelica sinensis (Danggui), a renowned medicinal orchid, has gained significant recognition for its therapeutic effects in treating a wide range of ailments. Genome information serves as a valuable resource, enabling researchers to gain a deeper understanding of gene function. In recent times, the availability of chromosome-level genomes for A. sinensis has opened up vast opportunities for exploring gene functionality. Integrating multiomics data can allow researchers to unravel the intricate mechanisms underlying gene function in A. sinensis and further enhance our knowledge of its medicinal properties. RESULTS In this study, we utilized genomic and transcriptomic data to construct a coexpression network for A. sinensis. To annotate genes, we aligned them with sequences from various databases, such as the NR, TAIR, trEMBL, UniProt, and SwissProt databases. For GO and KEGG annotations, we employed InterProScan and GhostKOALA software. Additionally, gene families were predicted using iTAK, HMMER, OrholoFinder, and KEGG annotation. To facilitate gene functional analysis in A. sinensis, we developed a comprehensive platform that integrates genomic and transcriptomic data with processed functional annotations. The platform includes several tools, such as BLAST, GSEA, Heatmap, JBrowse, and Sequence Extraction. This integrated resource and approach will enable researchers to explore the functional aspects of genes in A. sinensis more effectively. CONCLUSION We developed a platform, named ASAP, to facilitate gene functional analysis in A. sinensis. ASAP ( www.gzybioinformatics.cn/ASAP ) offers a comprehensive collection of genome data, transcriptome resources, and analysis tools. This platform serves as a valuable resource for researchers conducting gene functional research in their projects, providing them with the necessary data and tools to enhance their studies.
Collapse
Affiliation(s)
- Silan Wu
- Resource Institute for Chinese and Ethnic Materia MedicaGuizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Lingling Da
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia MedicaGuizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| | - Qi Pan
- Resource Institute for Chinese and Ethnic Materia MedicaGuizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia MedicaGuizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia MedicaGuizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
10
|
Chen T, Yang M, Cui G, Tang J, Shen Y, Liu J, Yuan Y, Guo J, Huang L. IMP: bridging the gap for medicinal plant genomics. Nucleic Acids Res 2024; 52:D1347-D1354. [PMID: 37870445 PMCID: PMC10767881 DOI: 10.1093/nar/gkad898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Medicinal plants have garnered significant attention in ethnomedicine and traditional medicine due to their potential antitumor, anti-inflammatory and antioxidant properties. Recent advancements in genome sequencing and synthetic biology have revitalized interest in natural products. Despite the availability of sequenced genomes and transcriptomes of these plants, the absence of publicly accessible gene annotations and tabular formatted gene expression data has hindered their effective utilization. To address this pressing issue, we have developed IMP (Integrated Medicinal Plantomics), a freely accessible platform at https://www.bic.ac.cn/IMP. IMP curated a total of 8 565 672 genes for 84 high-quality genome assemblies, and 2156 transcriptome sequencing samples encompassing various organs, tissues, developmental stages and stimulations. With the integrated 10 analysis modules, users could simply examine gene annotations, sequences, functions, distributions and expressions in IMP in a one-stop mode. We firmly believe that IMP will play a vital role in enhancing the understanding of molecular metabolic pathways in medicinal plants or plants with medicinal benefits, thereby driving advancements in synthetic biology, and facilitating the exploration of natural sources for valuable chemical constituents like drug discovery and drug production.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Mei Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Ye Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100000, China
| |
Collapse
|
11
|
Zuo X, Yang C, Yan Y, Huang G, Li R. Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns. PLANT SIGNALING & BEHAVIOR 2023; 18:2294426. [PMID: 38104280 PMCID: PMC10730155 DOI: 10.1080/15592324.2023.2294426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Thioredoxin (TRX) proteins play essential roles in reactive oxygen species scavenging in plants. We executed an exhaustive analysis of the TRX gene family in Citrus sinensis (CsTRXs), encompassing identification, phylogenetic analysis, detection of conserved motifs and domains, gene structure, cis-acting elements, gene expression trends, and subcellular localization analysis. Our findings established that a total of 22 CsTRXs with thioredoxin domains were identified in the genome of C. sinensis. Phylogenetic analysis indicated that CsTRXs were divided into six subclusters. Conserved motifs analysis of CsTRXs indicated a wide range of conserved motifs. A significant number of cis-acting elements associated with both abiotic and biotic stress responses, inclusive of numerous phytohormone-related elements, were detected in the promoter regions of CsTRXs. The expression levels of CsTRXs including CsTRXf1, CsTRXh1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were observed to be reduced upon pathogen infection. Subcellular localization analysis found that CsTRXf1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were predominantly localized in chloroplasts, whereas CsTRXh1 was distributed indiscriminately. This research yields integral data on CsTRXs, facilitating future efforts to decipher the gene functions of CsTRXs.
Collapse
Affiliation(s)
| | | | - Yana Yan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
12
|
Chen Y, Zhao H, Wang Y, Qiu X, Gao G, Zhu A, Chen P, Wang X, Chen K, Chen J, Chen P, Chen J. Genome-Wide Identification and Expression Analysis of BnPP2C Gene Family in Response to Multiple Stresses in Ramie ( Boehmeria nivea L.). Int J Mol Sci 2023; 24:15282. [PMID: 37894962 PMCID: PMC10607689 DOI: 10.3390/ijms242015282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Yue Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- National Breeding Center or Bast Fiber Crops, MARA, Changsha 410221, China
| |
Collapse
|
13
|
Xiao R, Sun Y, Yang S, Yang Y, Wang D, Wang Z, Zhou W. Systematic Identification and Functional Analysis of the Hypericum perforatum L. bZIP Gene Family Indicating That Overexpressed HpbZIP69 Enhances Drought Resistance. Int J Mol Sci 2023; 24:14238. [PMID: 37762543 PMCID: PMC10531856 DOI: 10.3390/ijms241814238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Basic leucine zipper (bZIP) transcription factors play significant roles in plants' growth and development processes, as well as in response to biological and abiotic stresses. Hypericum perforatum is one of the world's top three best-selling herbal medicines, mainly used to treat depression. However, there has been no systematic identification or functional analysis of the bZIP gene family in H. perforatum. In this study, 79 HpbZIP genes were identified. Based on phylogenetic analysis, the HpbZIP gene family was divided into ten groups, designated A-I and S. The physicochemical properties, gene structures, protein conserved motifs, and Gene Ontology enrichments of all HpbZIPs were systematically analyzed. The expression patterns of all genes in different tissues of H. perforatum (i.e., root, stem, leaf, and flower) were analyzed by qRT-PCR, revealing the different expression patterns of HpbZIP under abiotic stresses. The HpbZIP69 protein is localized in the nucleus. According to the results of the yeast one-hybrid (Y1H) assays, HpbZIP69 can bind to the HpASMT2 (N-acetylserotonin O-methyltransferase) gene promoter (G-box cis-element) to activate its activity. Overexpressing HpbZIP69 in Arabidopsis wild-type lines enhanced their tolerance to drought. The MDA and H2O2 contents were significantly decreased, and the activity of superoxide dismutase (SOD) was considerably increased under the drought stress. These results may aid in additional functional studies of HpbZIP transcription factors, and in cultivating drought-resistant medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (R.X.); (Y.S.); (S.Y.); (Y.Y.); (D.W.)
| | - Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (R.X.); (Y.S.); (S.Y.); (Y.Y.); (D.W.)
| |
Collapse
|
14
|
Thessen AE, Cooper L, Swetnam TL, Hegde H, Reese J, Elser J, Jaiswal P. Using knowledge graphs to infer gene expression in plants. Front Artif Intell 2023; 6:1201002. [PMID: 37384147 PMCID: PMC10298150 DOI: 10.3389/frai.2023.1201002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Climate change is already affecting ecosystems around the world and forcing us to adapt to meet societal needs. The speed with which climate change is progressing necessitates a massive scaling up of the number of species with understood genotype-environment-phenotype (G×E×P) dynamics in order to increase ecosystem and agriculture resilience. An important part of predicting phenotype is understanding the complex gene regulatory networks present in organisms. Previous work has demonstrated that knowledge about one species can be applied to another using ontologically-supported knowledge bases that exploit homologous structures and homologous genes. These types of structures that can apply knowledge about one species to another have the potential to enable the massive scaling up that is needed through in silico experimentation. Methods We developed one such structure, a knowledge graph (KG) using information from Planteome and the EMBL-EBI Expression Atlas that connects gene expression, molecular interactions, functions, and pathways to homology-based gene annotations. Our preliminary analysis uses data from gene expression studies in Arabidopsis thaliana and Populus trichocarpa plants exposed to drought conditions. Results A graph query identified 16 pairs of homologous genes in these two taxa, some of which show opposite patterns of gene expression in response to drought. As expected, analysis of the upstream cis-regulatory region of these genes revealed that homologs with similar expression behavior had conserved cis-regulatory regions and potential interaction with similar trans-elements, unlike homologs that changed their expression in opposite ways. Discussion This suggests that even though the homologous pairs share common ancestry and functional roles, predicting expression and phenotype through homology inference needs careful consideration of integrating cis and trans-regulatory components in the curated and inferred knowledge graph.
Collapse
Affiliation(s)
- Anne E. Thessen
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurel Cooper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Tyson L. Swetnam
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Harshad Hegde
- Environmental Genomics and Systems Biology Division, Berkeley Lab (DOE), Berkeley, CA, United States
| | - Justin Reese
- Environmental Genomics and Systems Biology Division, Berkeley Lab (DOE), Berkeley, CA, United States
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
15
|
Huang X, Qiu X, Wang Y, Abubakar AS, Chen P, Chen J, Chen K, Yu C, Wang X, Gao G, Zhu A. Genome-Wide Investigation of the NAC Transcription Factor Family in Apocynum venetum Revealed Their Synergistic Roles in Abiotic Stress Response and Trehalose Metabolism. Int J Mol Sci 2023; 24:ijms24054578. [PMID: 36902009 PMCID: PMC10003206 DOI: 10.3390/ijms24054578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the most prominent plant-specific TF families and play essential roles in plant growth, development and adaptation to abiotic stress. Although the NAC gene family has been extensively characterized in many species, systematic analysis is still relatively lacking in Apocynum venetum (A. venetum). In this study, 74 AvNAC proteins were identified from the A. venetum genome and were classified into 16 subgroups. This classification was consistently supported by their gene structures, conserved motifs and subcellular localizations. Nucleotide substitution analysis (Ka/Ks) showed the AvNACs to be under the influence of strong purifying selection, and segmental duplication events were found to play the dominant roles in the AvNAC TF family expansion. Cis-elements analysis demonstrated that the light-, stress-, and phytohormone-responsive elements being dominant in the AvNAC promoters, and potential TFs including Dof, BBR-BPC, ERF and MIKC_MADS were visualized in the TF regulatory network. Among these AvNACs, AvNAC58 and AvNAC69 exhibited significant differential expression in response to drought and salt stresses. The protein interaction prediction further confirmed their potential roles in the trehalose metabolism pathway with respect to drought and salt resistance. This study provides a reference for further understanding the functional characteristics of NAC genes in the stress-response mechanism and development of A. venetum.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Yue Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Department of Agronomy, Bayero University Kano, Kano PMB 3011, Nigeria
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Breeding Center for Bast Fiber Crops, Changsha 410221, China
- Key Laboratory of Genetic Breeding and Microbial Processing for Bast Fiber Product of Hunan Province, Changsha 410221, China
- Correspondence: (G.G.); (A.Z.); Tel.: +86-0731-8899-8511 (G.G.); +86-0731-8899-8586 (A.Z.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Breeding Center for Bast Fiber Crops, Changsha 410221, China
- Key Laboratory of Genetic Breeding and Microbial Processing for Bast Fiber Product of Hunan Province, Changsha 410221, China
- Correspondence: (G.G.); (A.Z.); Tel.: +86-0731-8899-8511 (G.G.); +86-0731-8899-8586 (A.Z.)
| |
Collapse
|