• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4639566)   Today's Articles (5529)   Subscriber (50291)
For: Czaun M, Goeppert A, May R, Haiges R, Prakash GKS, Olah GA. Hydrogen generation from formic acid decomposition by ruthenium carbonyl complexes. Tetraruthenium dodecacarbonyl tetrahydride as an active intermediate. ChemSusChem 2011;4:1241-1248. [PMID: 21404444 DOI: 10.1002/cssc.201000446] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Indexed: 05/30/2023]
Number Cited by Other Article(s)
1
Bhandari S, Rangarajan S, Li S, Scaranto J, Singh S, Maravelias CT, Dumesic JA, Mavrikakis M. A Coverage Self-Consistent Microkinetic Model for Vapor-Phase Formic Acid Decomposition over Pd/C Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
2
Yaacoub L, Dutta I, Werghi B, Chen BWJ, Zhang J, Hamad EA, Ling Ang EP, Pump E, Sedjerari AB, Huang KW, Basset JM. Formic Acid Dehydrogenation via an Active Ruthenium Pincer Catalyst Immobilized on Tetra-Coordinated Aluminum Hydride Species Supported on Fibrous Silica Nanospheres. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
3
Hijazi A, Khalaf N, Kwapinski W, Leahy JJ. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H2 donor: a critical review. RSC Adv 2022;12:13673-13694. [PMID: 35530384 PMCID: PMC9073962 DOI: 10.1039/d2ra01379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]  Open
4
The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation. ENERGIES 2022. [DOI: 10.3390/en15072356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
5
Cesari C, Bortoluzzi M, Femoni C, Carmela Iapalucci M, Zacchini S. Synthesis, molecular structure and fluxional behavior of the elusive [HRu4(CO)12]3- carbonyl anion. Dalton Trans 2022;51:2250-2261. [PMID: 35060580 DOI: 10.1039/d1dt03622j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Kipshagen A, Baums J, Hartmann H, Besmehn A, Hausoul P, Palkovits R. Formic Acid as H2 Storage System: Hydrogenation of CO2 and Decomposition of Formic Acid by Solid Molecular Phosphine Catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
Keshipour S, Mohammad-Alizadeh S. Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Sci Rep 2021;11:16148. [PMID: 34373517 PMCID: PMC8352921 DOI: 10.1038/s41598-021-95382-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 12/05/2022]  Open
8
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
9
Cesari C, Bortoluzzi M, Femoni C, Iapalucci MC, Zacchini S. One-pot atmospheric pressure synthesis of [H3Ru4(CO)12]. Dalton Trans 2021;50:9610-9622. [PMID: 34160508 DOI: 10.1039/d1dt01517f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
10
Lücken J, Auth T, Mozzi SI, Meyer F. Hexanuclear Copper(I) Hydride from the Reduction-Induced Decarboxylation of a Dicopper(II) Formate. Inorg Chem 2020;59:14347-14354. [DOI: 10.1021/acs.inorgchem.0c02126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
11
Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts 2020. [DOI: 10.3390/catal10070773] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
12
Bhandari S, Rangarajan S, Maravelias CT, Dumesic JA, Mavrikakis M. Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05424] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
13
Christopher Jeyakumar T, Sivasankar C. Dehydrogenation of formic acid catalysed by M-embedded nitrogen-doped graphene (M = Fe, Ru, Os): a DFT study. NEW J CHEM 2019. [DOI: 10.1039/c8nj04738c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Zell T, Langer R. CO2-based hydrogen storage – formic acid dehydrogenation. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
15
Mane S, Li YX, Xue DM, Liu XQ, Sun LB. Rational Design and Fabrication of Nitrogen-Enriched and Hierarchical Porous Polymers Targeted for Selective Carbon Capture. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Xin Z, Zhang J, Sordakis K, Beller M, Du CX, Laurenczy G, Li Y. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid. CHEMSUSCHEM 2018;11:2077-2082. [PMID: 29722204 DOI: 10.1002/cssc.201800408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Indexed: 05/19/2023]
17
Wang L, Neumann H, Beller M. A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
18
Wang L, Neumann H, Beller M. A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid. Angew Chem Int Ed Engl 2018;57:6910-6914. [DOI: 10.1002/anie.201802384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 01/05/2023]
19
Azarnia Mehraban J, Jalali MS, Heydari A. Formic acid catalyzed one-pot synthesis of α-aminophosphonates: an efficient, inexpensive and environmental friendly organocatalyst. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Cohen S, Borin V, Schapiro I, Musa S, De-Botton S, Belkova NV, Gelman D. Ir(III)-PC(sp3)P Bifunctional Catalysts for Production of H2 by Dehydrogenation of Formic Acid: Experimental and Theoretical Study. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem Rev 2017;118:372-433. [DOI: 10.1021/acs.chemrev.7b00182] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
22
Matsunami A, Kuwata S, Kayaki Y. A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
23
Ma QQ, Liu T, Adhikary A, Zhang J, Krause JA, Guan H. Using CS2 to Probe the Mechanistic Details of Decarboxylation of Bis(phosphinite)-Ligated Nickel Pincer Formate Complexes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00759] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
24
Czaun M, Kothandaraman J, Goeppert A, Yang B, Greenberg S, May RB, Olah GA, Prakash GKS. Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01605] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Zhao P, Xu W, Yang D, Luo W, Cheng G. Metal-Organic Framework Immobilized CoAuPd Nanoparticles with High Content of Non-precious Metal for Highly Efficient Hydrogen Generation from Formic Acid. ChemistrySelect 2016. [DOI: 10.1002/slct.201600397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
26
A prolific catalyst for dehydrogenation of neat formic acid. Nat Commun 2016;7:11308. [PMID: 27076111 PMCID: PMC4834634 DOI: 10.1038/ncomms11308] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]  Open
27
Agglomerated Pd catalysts and their applications in hydrogen production from formic acid decomposition at room temperature. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
28
Morris RH. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes. Chem Rev 2016;116:8588-654. [PMID: 26963836 DOI: 10.1021/acs.chemrev.5b00695] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Wang Z, Lu SM, Wu J, Li C, Xiao J. Iodide-Promoted Dehydrogenation of Formic Acid on a Rhodium Complex. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
30
Papp G, Ölveti G, Horváth H, Kathó Á, Joó F. Highly efficient dehydrogenation of formic acid in aqueous solution catalysed by an easily available water-soluble iridium(iii) dihydride. Dalton Trans 2016;45:14516-9. [DOI: 10.1039/c6dt01695b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
31
Mellmann D, Sponholz P, Junge H, Beller M. Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev 2016;45:3954-88. [DOI: 10.1039/c5cs00618j] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
32
Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem Rev 2015;115:12936-73. [DOI: 10.1021/acs.chemrev.5b00197] [Citation(s) in RCA: 1023] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
33
Zell T, Milstein D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization. Acc Chem Res 2015;48:1979-94. [PMID: 26079678 DOI: 10.1021/acs.accounts.5b00027] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
34
Wang Z, Lu SM, Li J, Wang J, Li C. Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with anN,N′-Diimine Ligand in Water. Chemistry 2015. [DOI: 10.1002/chem.201502086] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
35
Kothandaraman J, Czaun M, Goeppert A, Haiges R, Jones JP, May RB, Prakash GKS, Olah GA. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. CHEMSUSCHEM 2015;8:1442-51. [PMID: 25824142 DOI: 10.1002/cssc.201403458] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 05/19/2023]
36
CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand. Inorg Chem 2015;54:5114-23. [DOI: 10.1021/ic502904q] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
37
Gao H, Chen L, Chen J, Guo Y, Ye D. A computational study on the hydrogenation of CO2 catalyzed by a tetraphos-ligated cobalt complex: monohydride vs. dihydride. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01031k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
38
Suna Y, Ertem MZ, Wang WH, Kambayashi H, Manaka Y, Muckerman JT, Fujita E, Himeda Y. Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes. Organometallics 2014. [DOI: 10.1021/om500832d] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
39
Murray RE, Walter EL, Doll KM. Tandem Isomerization-Decarboxylation for Converting Alkenoic Fatty Acids into Alkenes. ACS Catal 2014. [DOI: 10.1021/cs501019t] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
40
Mellmann D, Barsch E, Bauer M, Grabow K, Boddien A, Kammer A, Sponholz P, Bentrup U, Jackstell R, Junge H, Laurenczy G, Ludwig R, Beller M. Base‐Free Non‐Noble‐Metal‐Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights. Chemistry 2014;20:13589-602. [DOI: 10.1002/chem.201403602] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 11/07/2022]
41
Zhang J, Sun M, Liu X, Han Y. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.12.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Wang WH, Xu S, Manaka Y, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight. CHEMSUSCHEM 2014;7:1976-1983. [PMID: 24840600 DOI: 10.1002/cssc.201301414] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/24/2014] [Indexed: 06/03/2023]
43
Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA. Recycling of carbon dioxide to methanol and derived products - closing the loop. Chem Soc Rev 2014;43:7995-8048. [PMID: 24935751 DOI: 10.1039/c4cs00122b] [Citation(s) in RCA: 628] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
44
Manaka Y, Wang WH, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y. Efficient H2generation from formic acid using azole complexes in water. Catal Sci Technol 2014. [DOI: 10.1039/c3cy00830d] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
45
Ruthenium-Catalyzed Hydrogen Generation from Alcohols and Formic Acid, Including Ru-Pincer-Type Complexes. TOP ORGANOMETAL CHEM 2014. [DOI: 10.1007/3418_2014_84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
46
Czaun M, Goeppert A, Kothandaraman J, May RB, Haiges R, Prakash GKS, Olah GA. Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions. ACS Catal 2013. [DOI: 10.1021/cs4007974] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
47
Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem Rev 2013. [DOI: 10.1021/cr4002758 pmid: 24313306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
48
Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 2013;114:1709-42. [PMID: 24313306 DOI: 10.1021/cr4002758] [Citation(s) in RCA: 1635] [Impact Index Per Article: 148.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
49
Organoamines-grafted on nano-sized silica for carbon dioxide capture. J CO2 UTIL 2013. [DOI: 10.1016/j.jcou.2013.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
50
Fukuzumi S, Suenobu T. Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Trans 2013;42:18-28. [PMID: 23080061 DOI: 10.1039/c2dt31823g] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA