1
|
Nguyen MC, Berto P, Valentino F, Lemineur JF, Noel JM, Kanoufi F, Tessier G. 3D Spectroscopic Tracking of Individual Brownian Nanoparticles during Galvanic Exchange. ACS NANO 2022; 16:14422-14431. [PMID: 36099198 DOI: 10.1021/acsnano.2c04792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring chemical reactions in solutions at the scale of individual entities is challenging: single-particle detection requires small confocal volumes, which are hardly compatible with Brownian motion, particularly when long integration times are necessary. Here, we propose a real-time (10 Hz) holography-based nm-precision 3D tracking of single moving nanoparticles. Using this localization, the confocal collection volume is dynamically adjusted to follow the moving nanoparticle and allow continuous spectroscopic monitoring. This concept is applied to study galvanic exchange in freely moving colloidal silver nanoparticles with gold ions generated in situ. While the Brownian trajectory reveals particle size, spectral shifts dynamically reveal composition changes and transformation kinetics at the single-object level, pointing at different transformation kinetics for free and tethered particles.
Collapse
Affiliation(s)
- Minh-Chau Nguyen
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Pascal Berto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Fabrice Valentino
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | | | - Jean-Marc Noel
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | | | - Gilles Tessier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| |
Collapse
|
2
|
Zulkifli DP, Kim MH. High-yield Synthesis and Hybridizations of Cu Microplates for Catalytic Applications. CrystEngComm 2022. [DOI: 10.1039/d2ce00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of their special geometrical features, which include a high specific surface area and high proportion of exposed surface atoms, two-dimensional (2D) metal nanostructures based on Au and Ag have...
Collapse
|
3
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
4
|
Jiang J, Yoon S, Piao L. Hollow porous Cu–Au particles with high catalytic activity for the reduction of 4-nitrophenol. CrystEngComm 2020. [DOI: 10.1039/d0ce00523a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A Cu-based bimetallic hollow structure can be effectively used to enhance the selective oxidation and electrocatalytic activity of a catalyst and to reduce its cost.
Collapse
Affiliation(s)
- Jianwei Jiang
- Department of Chemistry
- Chung-Ang University
- Seoul
- Republic of Korea
| | - Sungho Yoon
- Department of Chemistry
- Chung-Ang University
- Seoul
- Republic of Korea
| | - Longhai Piao
- Department of Chemistry
- Kongju National University
- Chungnam
- Korea
| |
Collapse
|
5
|
Gold Nanoparticles Supported on Urchin-Like CuO: Synthesis, Characterization, and Their Catalytic Performance for CO Oxidation. NANOMATERIALS 2019; 10:nano10010067. [PMID: 31892172 PMCID: PMC7022736 DOI: 10.3390/nano10010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/25/2023]
Abstract
Gold catalysts have been studied in-depth due to their unique activities for catalytic CO oxidation. Supports have intrinsic motivation for the high activity of gold catalysts. Thermally stable urchin-like CuO microspheres, which are potential support for gold catalysts, were prepared by facile solution-method. Then gold nanoparticles were loaded on them by deposition-precipitation method. The obtained gold catalysts were characterized by SEM, XRD, TEM, BET, ICP, and XPS. Their catalytic activity for CO oxidation was also evaluated. TEM results revealed that the gold nanoparticles with small sizes were highly distributed on the CuO surface in Au1.0/CuO-300. XPS observations demonstrated that the gold species in Au1.0/CuO-300 was of metallic state. Among the as-prepared catalysts, the Au1.0/CuO-300 catalyst displayed the best performance for CO oxidation and achieved 100% CO oxidation at 80 °C. It kept 100% conversion for 20 h at a reaction temperature of 180 °C, and showed good reusability after three reaction-cycles. The possible catalytic mechanism of Au1.0/CuO-300 catalyst for CO oxidation was also briefly proposed.
Collapse
|
6
|
Feng J, Yin Y. Self-Templating Approaches to Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802349. [PMID: 30155924 DOI: 10.1002/adma.201802349] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This current research progress on the fabrication of hollow nanostructures by using self-templating methods is reviewed. After a brief introduction to the unique properties and applications of hollow nanostructures and the three general fabrication routes, the discussions are focused on the five main self-templating strategies, including galvanic replacement, the Kirkendall effect, Ostwald ripening, dissolution-regrowth, and the surface-protected hollowing process. Some newly developed synthetic routes are selected and discussed in detail. In conclusion, a summary and the perspectives on the directions that might lead the future development of this exciting field are presented.
Collapse
Affiliation(s)
- Ji Feng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
7
|
Smith JG, Chakraborty I, Jain PK. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation. Angew Chem Int Ed Engl 2016; 55:9979-83. [PMID: 27381891 DOI: 10.1002/anie.201604710] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/28/2023]
Abstract
Bimetallic nanostructures (NSs), with utility in catalysis, are typically prepared using galvanic exchange (GE), but the final catalyst morphology is dictated by the dynamics of the process. In situ single nanoparticle (NP) optical scattering spectroscopy, coupled with ex situ electron microscopy, is used to capture the dynamic structural evolution of a bimetallic NS formed in a GE reaction between Ag and [PtCl6 ](2-) . We identify an early stage involving anisotropic oxidation of Ag to AgCl concomitant with reductive deposition of small Pt clusters on the NS surface. At later stages of GE, unreacted Ag inclusions phase segregate from the overcoated AgCl as a result of lattice strain between Ag and AgCl. The nature of the structural evolution elucidates why multi-domain Ag/AgCl/Pt NSs result from the GE process. The complex structural dynamics, determined from single-NP trajectories, would be masked in ensemble studies due to heterogeneity in the response of different NPs.
Collapse
Affiliation(s)
- Jeremy G Smith
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Indranath Chakraborty
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Prashant K Jain
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA. .,Materials Research Lab, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Smith JG, Chakraborty I, Jain PK. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jeremy G. Smith
- Dept. of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| | - Indranath Chakraborty
- Dept. of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| | - Prashant K. Jain
- Dept. of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
- Materials Research Lab; University of Illinois at Urbana-Champaign; 104 South Goodwin Avenue Urbana IL 61801 USA
| |
Collapse
|
9
|
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem Rev 2016; 116:10414-72. [DOI: 10.1021/acs.chemrev.6b00211] [Citation(s) in RCA: 1109] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Gilroy
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | | | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Wang X, Feng J, Bai Y, Zhang Q, Yin Y. Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chem Rev 2016; 116:10983-1060. [DOI: 10.1021/acs.chemrev.5b00731] [Citation(s) in RCA: 1044] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People’s Republic of China
| | | |
Collapse
|
11
|
Fu Q, Sheng Y, Tang H, Zhu Z, Ruan M, Xu W, Zhu Y, Tang Z. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS NANO 2015; 9:172-179. [PMID: 25518003 DOI: 10.1021/nn5027998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The synthesis of colloidal supraparticles (SPs) based on self-assembly of nanoscopic objects has attracted much attention in recent years. Here, we demonstrate the formation of self-limiting monodisperse gold SPs with core-shell morphology based on the building blocks of flexible nanoarms in one step. A flow-based microfluidic chip is utilized to slow down the assembly process of the intermediates, which surprisingly allows for observation of ultrathin gold nanoplates as first intermediates. Notably, these intermediate cannot be observed in traditional synthesis due to their rapid rolling-up to form the second-order nanostructure of flexible hollow nanoarms. The growth mechanism of SPs can then be deconvoluted into two seed-mediated steps. Monte Carlo simulations confirm that the self-limiting growth of binary SPs is governed by a balance between electrostatic repulsion and van der Waals attraction.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun 130022, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|