1
|
Ye ZM, Xie Y, Kirlikovali KO, Xiang S, Farha OK, Chen B. Architecting Metal-Organic Frameworks at Molecular Level toward Direct Air Capture. J Am Chem Soc 2025; 147:5495-5514. [PMID: 39919319 DOI: 10.1021/jacs.4c12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Escalating carbon dioxide (CO2) emissions have intensified the greenhouse effect, posing a significant long-term threat to environmental sustainability. Direct air capture (DAC) has emerged as a promising approach to achieving a net-zero carbon future, which offers several practical advantages, such as independence from specific CO2 emission sources, economic feasibility, flexible deployment, and minimal risk of CO2 leakage. The design and optimization of DAC sorbents are crucial for accelerating industrial adoption. Metal-organic frameworks (MOFs), with high structural order and tunable pore sizes, present an ideal solution for achieving strong guest-host interactions under trace CO2 conditions. This perspective highlights recent advancements in using MOFs for DAC, examines the molecular-level effects of water vapor on trace CO2 capture, reviews data-driven computational screening methods to develop a molecularly programmable MOF platform for identifying optimal DAC sorbents, and discusses scale-up and cost of MOFs for DAC.
Collapse
Affiliation(s)
- Zi-Ming Ye
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Kang M, Youn J, Choe JH, Lee JH, Hong CS. Diaminopropane-Functionalized Metal-Organic Frameworks with Controllable Diamine Loss and One-Channel Flipped CO 2 Adsorption Mode. CHEMSUSCHEM 2025; 18:e202401404. [PMID: 39166722 DOI: 10.1002/cssc.202401404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Diamine-functionalized metal-organic frameworks (MOFs) based on Mg2(dobpdc) (dobpdc4-=4,4'-dioxidobihyenyl-3,3'-dicarboxylate) are considered promising CO2 adsorbents owing to their characteristic stepwise adsorption behavior. However, the high temperatures required for CO2 desorption from diamine-Mg2(dobpdc)-based adsorbents induce gradual diamine loss. Additionally, the existence of an exotic CO2 adsorption mode remains experimentally unanswered. Herein, we present CO2 adsorbents obtained by functionalizing Mn2(dobpdc) with a series of diaminopropane derivatives. The low regeneration energies of these adsorbents allow for CO2 desorption at temperatures lower than those reported for Mg-based analogs. Our first-principles density functional theory calculations indicated that the bond strength between the diamine and Mn ions in Mn2(dobpdc) is greater than that between the diamine and Mg ions in Mg2(dobpdc). This stronger bonding prevents diamine loss even at high temperatures and enables efficient regeneration. Additionally, the computational and experimental results showed that MOFs functionalized with primary-tertiary diamine exhibit unique one-channel flipped adsorption structures that have not been previously observed. Our findings provide valuable insights into the role of metal ions in diamine loss for the future development of efficient amine-based CO2 adsorbents.
Collapse
Affiliation(s)
- Minjung Kang
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongwon Youn
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Seop Hong
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Choe JH, Kim H, Yun H, Kurisingal JF, Kim N, Lee D, Lee YH, Hong CS. Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. J Am Chem Soc 2024; 146:19337-19349. [PMID: 38953459 DOI: 10.1021/jacs.4c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Direct air capture (DAC) shows considerable promise for the effective removal of CO2; however, materials applicable to DAC are lacking. Among metal-organic framework (MOF) adsorbents, diamine-Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) effectively removes low-pressure CO2, but the synthesis of the organic ligand requires high temperature, high pressure, and a toxic solvent. Besides, it is necessary to isolate the ligand for utilization in the synthesis of the framework. In this study, we synthesized a new variant of extended MOF-74-type frameworks, M2(hob) (M = Mg2+, Co2+, Ni2+, and Zn2+; hob4- = 5,5'-(hydrazine-1,2-diylidenebis(methanylylidene))bis(2-oxidobenzoate)), constructed from an azine-bonded organic ligand obtained through a facile condensation reaction at room temperature. Functionalization of Mg2(hob) with N-methylethylenediamine, N-ethylethylenediamine, and N,N'-dimethylethylenediamine (mmen) enables strong interactions with low-pressure CO2, resulting in top-tier adsorption capacities of 2.60, 2.49, and 2.91 mmol g-1 at 400 ppm of CO2, respectively. Under humid conditions, the CO2 capacity was higher than under dry conditions due to the presence of water molecules that aid in the formation of bicarbonate species. A composite material combining mmen-Mg2(hob) and polyvinylidene fluoride, a hydrophobic polymer, retained its excellent adsorption performance even after 7 days of exposure to 40% relative humidity. In addition, the one-pot synthesis of Mg2(hob) from a mixture of the corresponding monomers is achieved without separate ligand synthesis steps; thus, this framework is suitable for facile large-scale production. This work underscores that the newly synthesized Mg2(hob) and its composites demonstrate significant potential for DAC applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | | | - Namju Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Donggyu Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yong Hoon Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Zhu Z, Tsai H, Parker ST, Lee JH, Yabuuchi Y, Jiang HZH, Wang Y, Xiong S, Forse AC, Dinakar B, Huang A, Dun C, Milner PJ, Smith A, Guimarães Martins P, Meihaus KR, Urban JJ, Reimer JA, Neaton JB, Long JR. High-Capacity, Cooperative CO 2 Capture in a Diamine-Appended Metal-Organic Framework through a Combined Chemisorptive and Physisorptive Mechanism. J Am Chem Soc 2024; 146:6072-6083. [PMID: 38400985 PMCID: PMC10921408 DOI: 10.1021/jacs.3c13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.
Collapse
Affiliation(s)
- Ziting Zhu
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hsinhan Tsai
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jung-Hoon Lee
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Yuto Yabuuchi
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yang Wang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Shuoyan Xiong
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alexander C. Forse
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Bhavish Dinakar
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Adrian Huang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chaochao Dun
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip J. Milner
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alex Smith
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Pedro Guimarães Martins
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey J. Urban
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey A. Reimer
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B. Neaton
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Choe JH, Kim H, Yun H, Kang M, Park S, Yu S, Hong CS. Boc Protection for Diamine-Appended MOF Adsorbents to Enhance CO 2 Recyclability under Realistic Humid Conditions. J Am Chem Soc 2024; 146:646-659. [PMID: 38151051 DOI: 10.1021/jacs.3c10475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Among the various metal-organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diamine-functionalized Mg2(dobpdc) in practical applications is premature because it shows persistent performance degradation under real flue gas conditions containing water vapor owing to diamine loss during wet cycles. To address this issue, we employed hydrophobic carbonate compounds to protect diamine groups in een-Mg2(dobpdc) (een-MOF, een = N-ethylethylenediamine). tert-Butyl dicarbonate (Boc) reacted rapidly with diamines at the pore openings of MOF particles to form dense secondary and tertiary hydrophobic amines, effectively preventing moisture ingress. The Boc-protected een-MOF-Boc1 maintained excellent CO2 adsorption even under simulated flue gas conditions containing 10% H2O. This observation indicates that Boc protection renders een groups intact during repeated wet cycles, suggesting that Boc-protected een groups are resistant to replacement by water molecules. To increase the practicability of the MOF adsorbent, we fabricated een-MOF/PAN-Boc1 composite beads by shaping MOF particles with polyacrylonitrile (PAN). Notably, the composite beads maintained their CO2 adsorption performance even after repeating the temperature swing adsorption process more than 150 times in 10% water vapor. Furthermore, breakthrough tests showed that the dynamic CO2 separation performance was retained under humid conditions. These results demonstrate that Boc protection provides an easy and effective way to develop promising adsorbents with high CO2 adsorption capacity, long-term durability, and the properties required for postcombustion applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sookyung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sumin Yu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Zhu Z, Parker ST, Forse AC, Lee JH, Siegelman RL, Milner PJ, Tsai H, Ye M, Xiong S, Paley MV, Uliana AA, Oktawiec J, Dinakar B, Didas SA, Meihaus KR, Reimer JA, Neaton JB, Long JR. Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium-Olsalazine Frameworks. J Am Chem Soc 2023; 145:17151-17163. [PMID: 37493594 PMCID: PMC10416307 DOI: 10.1021/jacs.3c03870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 07/27/2023]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.
Collapse
Affiliation(s)
- Ziting Zhu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alexander C. Forse
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Jung-Hoon Lee
- Department
of Physics, University of California, Berkeley, California94720, United States
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca L. Siegelman
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Phillip J. Milner
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hsinhan Tsai
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Mengshan Ye
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Shuoyan Xiong
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Maria V. Paley
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Adam A. Uliana
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Julia Oktawiec
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Bhavish Dinakar
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Stephanie A. Didas
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
| | - Jeffrey B. Neaton
- Department
of Physics, University of California, Berkeley, California94720, United States
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Åhlén M, Cheung O, Xu C. Low-concentration CO 2 capture using metal-organic frameworks - current status and future perspectives. Dalton Trans 2023; 52:1841-1856. [PMID: 36723043 DOI: 10.1039/d2dt04088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ever-increasing atmospheric CO2 level is considered to be the major cause of climate change. Although the move away from fossil fuel-based energy generation to sustainable energy sources would significantly reduce the release of CO2 into the atmosphere, it will most probably take time to be fully implemented on a global scale. On the other hand, capturing CO2 from emission sources or directly from the atmosphere are robust approaches that can reduce the atmospheric CO2 concentration in a relatively short time. Here, we provide a perspective on the recent development of metal-organic framework (MOF)-based solid sorbents that have been investigated for application in CO2 capture from low-concentration (<10 000 ppm) CO2 sources. We summarized the different sorbent engineering approaches adopted by researchers, both from the sorbent development and processing viewpoints. We also discuss the immediate challenges of using MOF-based CO2 sorbents for low-concentration CO2 capture. MOF-based materials, with tuneable pore properties and tailorable surface chemistry, and ease of handling, certainly deserve continued development into low-cost, efficient CO2 sorbents for low-concentration CO2 capture.
Collapse
Affiliation(s)
- Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| | - Chao Xu
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| |
Collapse
|
9
|
Pugh SM, Forse AC. Nuclear magnetic resonance studies of carbon dioxide capture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107343. [PMID: 36512903 DOI: 10.1016/j.jmr.2022.107343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Carbon dioxide capture is an important greenhouse gas mitigation technology that can help limit climate change. The design of improved capture materials requires a detailed understanding of the mechanisms by which carbon dioxide is bound. Nuclear magnetic resonance (NMR) spectroscopy methods have emerged as a powerful probe of CO2 sorption and diffusion in carbon capture materials. In this article, we first review the practical considerations for carrying out NMR measurements on capture materials dosed with CO2 and we then present three case studies that review our recent work on NMR studies of CO2 binding in metal-organic framework materials. We show that simple 13C NMR experiments are often inadequate to determine CO2 binding modes, but that more advanced experiments such as multidimensional NMR experiments and 17O NMR experiments can lead to more conclusive structural assignments. We further discuss how pulsed field gradient (PFG) NMR can be used to explore diffusion of adsorbed CO2 through the porous framework. Finally, we provide an outlook on the challenges and opportunities for the further development of NMR methodologies that can improve our understanding of carbon capture.
Collapse
Affiliation(s)
- Suzi M Pugh
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK.
| |
Collapse
|
10
|
Li M, Zhu Z, Liu J, Jin J, Du L, Mi J. Grafting Poly(ethyleneimine) on Macroporous Core–Sheath Copolymer Beads with a Robust Framework for Stable CO 2 Capture under Low-Temperature Regeneration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mengchen Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhiyu Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Junteng Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Junsu Jin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Le Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
11
|
Parker ST, Smith A, Forse AC, Liao WC, Brown-Altvater F, Siegelman RL, Kim EJ, Zill NA, Zhang W, Neaton JB, Reimer JA, Long JR. Evaluation of the Stability of Diamine-Appended Mg 2(dobpdc) Frameworks to Sulfur Dioxide. J Am Chem Soc 2022; 144:19849-19860. [PMID: 36265017 DOI: 10.1021/jacs.2c07498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are a promising class of CO2 adsorbents, although their stability to SO2─a trace component of industrially relevant exhaust streams─remains largely untested. Here, we investigate the impact of SO2 on the stability and CO2 capture performance of dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-propanediamine), a candidate material for carbon capture from coal flue gas. Using SO2 breakthrough experiments and CO2 isobar measurements, we find that the material retains 91% of its CO2 capacity after saturation with a wet simulated flue gas containing representative levels of CO2 and SO2, highlighting the robustness of this framework to SO2 under realistic CO2 capture conditions. Initial SO2 cycling experiments suggest dmpn-Mg2(dobpdc) may achieve a stable operating capacity in the presence of SO2 after initial passivation. Evaluation of several other diamine-Mg2(dobpdc) variants reveals that those with primary,primary (1°,1°) diamines, including dmpn-Mg2(dobpdc), are more robust to humid SO2 than those featuring primary,secondary (1°,2°) or primary,tertiary (1°,3°) diamines. Based on the solid-state 15N NMR spectra and density functional theory calculations, we find that under humid conditions, SO2 reacts with the metal-bound primary amine in 1°,2° and 1°,3° diamine-appended Mg2(dobpdc) to form a metal-bound bisulfite species that is charge balanced by a primary ammonium cation, thereby facilitating material degradation. In contrast, humid SO2 reacts with the free end of 1°,1° diamines to form ammonium bisulfite, leaving the metal-diamine bond intact. This structure-property relationship can be used to guide further optimization of these materials for CO2 capture applications.
Collapse
Affiliation(s)
- Surya T Parker
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Smith
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wei-Chih Liao
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Florian Brown-Altvater
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca L Siegelman
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Eugene J Kim
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
13
|
Choe JH, Kim H, Kang M, Yun H, Kim SY, Lee SM, Hong CS. Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO 2 Recyclability under Humid Conditions. J Am Chem Soc 2022; 144:10309-10319. [PMID: 35657696 DOI: 10.1021/jacs.2c01488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although diamine-appended metal-organic framework (MOF) adsorbents exhibit excellent CO2 adsorption performance, a continuous decrease in long-term capacity during repeated wet cycles remains a formidable challenge for practical applications. Herein, we present the fabrication of diamine-appended Mg2(dobpdc)-alumina beads (een-MOF/Al-Si-Cx; een = N-ethylethylenediamine; x = number of carbon atoms attached to epoxide) coated with hydrophobic silanes and alkyl epoxides. The reaction of epoxides with diamines in the portal of the pore afforded sufficient hydrophobicity, hindered the penetration of water vapor into the pores, and rendered the modified diamines less volatile. een-MOF/Al-Si-C17-200 (een-MOF/Al-Si-C17-y; y = 50, 100, and 200, denoting wt % of C17 with respect to the bead, respectively), with substantial hydrophobicity, showed a significant uptake of 2.82 mmol g-1 at 40 °C and 15% CO2, relevant to flue gas concentration, and a reduced water adsorption. The modified beads maintained a high CO2 capacity for over 100 temperature-swing adsorption cycles in the presence of 5% H2O and retained CO2 separation performance in breakthrough tests under humid conditions. This result demonstrates that the epoxide coating provides a facile and effective method for developing promising adsorbents with high CO2 adsorption capacity and long-term durability, which is a required property for postcombustion applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Su Min Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Amine-Functionalized Metal-Organic Frameworks: from Synthetic Design to Scrutiny in Application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Siegelman RL, Thompson JA, Mason JA, McDonald TM, Long JR. A cooperative adsorbent for the switch-like capture of carbon dioxide from crude natural gas. Chem Sci 2022; 13:11772-11784. [PMID: 36320899 PMCID: PMC9580483 DOI: 10.1039/d2sc03570g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Natural gas constitutes a growing share of global primary energy due to its abundant supply and lower CO2 emission intensity compared to coal. For many natural gas reserves, CO2 contamination must be removed at the wellhead to meet pipeline specifications. Here, we demonstrate the potential of the diamine-appended metal–organic framework ee-2–Mg2(dobpdc) (ee-2 = N,N-diethylethylenediamine; dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) as a next-generation CO2 capture material for high-pressure natural gas purification. Owing to a cooperative adsorption mechanism involving formation of ammonium carbamate chains, ee-2–Mg2(dobpdc) can be readily regenerated with a minimal change in temperature or pressure and maintains its CO2 capacity in the presence of water. Moreover, breakthrough experiments reveal that water enhances the CO2 capture performance of ee-2–Mg2(dobpdc) by eliminating “slip” of CO2 before full breakthrough. Spectroscopic characterization and multicomponent adsorption isobars suggest that the enhanced performance under humid conditions arises from preferential stabilization of the CO2-inserted phase in the presence of water. The favorable performance of ee-2–Mg2(dobpdc) is further demonstrated through comparison with a benchmark material for this separation, zeolite 13X, as well as extended pressure cycling. Overall, these results support continued development of ee-2–Mg2(dobpdc) as a promising adsorbent for natural gas purification. Diamine-appended metal–organic frameworks can be optimized as adsorbents for pressure-swing purification of crude natural gas. A cooperative CO2 binding mechanism enables high CO2 swing capacities and enhanced performance under humid conditions.![]()
Collapse
Affiliation(s)
- Rebecca L. Siegelman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Jarad A. Mason
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Thomas M. McDonald
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Dinakar B, Forse AC, Jiang HZH, Zhu Z, Lee JH, Kim EJ, Parker ST, Pollak CJ, Siegelman RL, Milner PJ, Reimer JA, Long JR. Overcoming Metastable CO 2 Adsorption in a Bulky Diamine-Appended Metal-Organic Framework. J Am Chem Soc 2021; 143:15258-15270. [PMID: 34491725 PMCID: PMC11045294 DOI: 10.1021/jacs.1c06434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon capture at fossil fuel-fired power plants is a critical strategy to mitigate anthropogenic contributions to global warming, but widespread deployment of this technology is hindered by a lack of energy-efficient materials that can be optimized for CO2 capture from a specific flue gas. As a result of their tunable, step-shaped CO2 adsorption profiles, diamine-functionalized metal-organic frameworks (MOFs) of the form diamine-Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are among the most promising materials for carbon capture applications. Here, we present a detailed investigation of dmen-Mg2(dobpdc) (dmen = 1,2-diamino-2-methylpropane), one of only two MOFs with an adsorption step near the optimal pressure for CO2 capture from coal flue gas. While prior characterization suggested that this material only adsorbs CO2 to half capacity (0.5 CO2 per diamine) at 1 bar, we show that the half-capacity state is actually a metastable intermediate. Under appropriate conditions, the MOF adsorbs CO2 to full capacity, but conversion from the half-capacity structure happens on a very slow time scale, rendering it inaccessible in traditional adsorption measurements. Data from solid-state magic angle spinning nuclear magnetic resonance spectroscopy, coupled with van der Waals-corrected density functional theory, indicate that ammonium carbamate chains formed at half capacity and full capacity adopt opposing configurations, and the need to convert between these states likely dictates the sluggish post-half-capacity uptake. By use of the more symmetric parent framework Mg2(pc-dobpdc) (pc-dobpdc4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate), the metastable trap can be avoided and the full CO2 capacity of dmen-Mg2(pc-dobpdc) accessed under conditions relevant for carbon capture from coal-fired power plants.
Collapse
Affiliation(s)
- Bhavish Dinakar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander C. Forse
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - Henry Z. H. Jiang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ziting Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eugene J. Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Connor J. Pollak
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Rebecca L. Siegelman
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Phillip J. Milner
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Gheorghe A, Reus S, Koenis M, Dubbeldam D, Woutersen S, Tanase S. Role of additives and solvents in the synthesis of chiral isoreticular MOF-74 topologies. Dalton Trans 2021; 50:12159-12167. [PMID: 34519750 PMCID: PMC8439144 DOI: 10.1039/d1dt01945g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral induction is a simple and inexpensive approach to synthesise chiral metal–organic frameworks, even when using achiral building-blocks. The challenge lies in selecting the proper chiral inductor. This can only be achieved upon understanding the mechanism behind the chirality transfer from the chiral guest to the achiral MOF. In this work, the role of two types of chiral additives and different solvents was investigated in the crystallization of isoreticular MOF-74. We show that pyrrolidone-based solvents can interact with the framework walls and influence the thermal stability of the MOF. The role of the different chiral additives is related to the strength of their interaction with the MOF. Unlike cinchona alkaloids that have weak interactions with the framework, l- or d-trans-4-hydroxyproline (l- or d-Hyp) can strongly bind to the Zn2+ metal centres and cause the twisting of the organic linker. Moreover, l- and d-Hyp additives can affect the IRMOF-74 nucleation process depending on their concentration and handedness. Strongly interacting chiral additives play a complex role during the crystallisation of chiral isoreticular MOF-74. They can coordinate to the open sites of the metal ions and induce strain on the framework, leading to a local twisting of the organic linker.![]()
Collapse
Affiliation(s)
- Andreea Gheorghe
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Suzanne Reus
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Mark Koenis
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Stefania Tanase
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Choi DS, Kim DW, Lee JH, Chae YS, Kang DW, Hong CS. Diamine Functionalization of a Metal-Organic Framework by Exploiting Solvent Polarity for Enhanced CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38358-38364. [PMID: 34342422 DOI: 10.1021/acsami.1c10659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diamine-appended metal-organic frameworks (MOFs) exhibit exceptional CO2 adsorption capacities over a wide pressure range because of the strong interaction between basic amine groups and acidic CO2. Given that their high CO2 working capacity is governed by solvent used during amine functionalization, a systematic investigation on solvent effect is essential but not yet demonstrated. Herein, we report a facile one-step solvent exchange route for the diamine functionalization of MOFs with open metal sites, using an efficient method to maximize diamine loading. We employed an MOF, Mg2(dobpdc) (dobpdc4- = 4,4'-dioxido-3,3'-biphenyldicarboxylate), which contains high-density open metal sites. Indirect grafting with N-ethylethylenediamine (een) was performed with a minimal amount of methanol (MeOH) via multiple MeOH exchanges and diamine functionalization, resulting in a top-tier CO2 adsorption capacity of 16.5 wt %. We established the correlation between N,N-dimethylformamide (DMF) loading and infrared peaks, which provides a simple method for determining the amount of the remaining DMF in Mg2(dobpdc). All interactions among Mg, DMF, diamine, and solvent were analyzed by van der Waals (vdw)-corrected density functional theory (DFT) calculations to elucidate the effect of chemical potential on diamine grafting.
Collapse
Affiliation(s)
- Doo San Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dae Won Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Seok Chae
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
|
20
|
Ju SE, Choe JH, Kang M, Kang DW, Kim H, Lee JH, Hong CS. Understanding Correlation Between CO 2 Insertion Mechanism and Chain Length of Diamine in Metal-Organic Framework Adsorbents. CHEMSUSCHEM 2021; 14:2426-2433. [PMID: 33871138 DOI: 10.1002/cssc.202100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Although CO2 insertion is a predominant phenomenon in diamine-functionalized Mg2 (dobpdc) (dobpdc4- =4,4-dioxidobiphenyl-3,3'-dicarboxylate) adsorbents, a high-performance metal-organic framework for capturing CO2 , the fundamental function of the diamine carbon chain length in the mechanism remains unclear. Here, Mg2 (dobpdc) systems with open metal sites grafted by primary diamines NH2 -(CH2 )n -NH2 were developed, with en (n=2), pn (n=3), bn (n=4), pen (n=5), hn (n=6), and on (n=8). Based on CO2 adsorption and IR results, CO2 insertion is involved in frameworks with n=2 and 3 but not in systems with n≥5. According to NMR data, bn-appended Mg2 (dobpdc) exhibited three different chemical environments of carbamate units, attributed to different relative conformations of carbon chains upon CO2 insertion, as validated by first-principles density functional theory (DFT) calculations. For 1-hn and 1-on, DFT calculations indicated that diamine inter-coordinated open metal sites in adjacent chains bridged by carboxylates and phenoxides of dobpdc4- . Computed CO2 binding enthalpies for CO2 insertion (-27.8 kJ mol-1 for 1-hn and -20.2 kJ mol-1 for 1-on) were comparable to those for CO2 physisorption (-19.3 kJ mol-1 for 1-hn and -20.8 kJ mol-1 for 1-on). This suggests that CO2 insertion is likely to compete with CO2 physisorption on diamines of the framework when n≥5.
Collapse
Affiliation(s)
- Susan E Ju
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| |
Collapse
|
21
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
22
|
Abedi M, Abolmaali SS, Heidari R, Mohammadi Samani S, Tamaddon AM. Hierarchical mesoporous zinc-imidazole dicarboxylic acid MOFs: Surfactant-directed synthesis, pH-responsive degradation, and drug delivery. Int J Pharm 2021; 602:120685. [PMID: 33964340 DOI: 10.1016/j.ijpharm.2021.120685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023]
Abstract
The surfactant template-directed solvothermal method was applied in the synthesis of hierarchical mesoporous zinc-imidazolate derivative metal-organic framework (mesoMOF), which was then utilized for active loading of cisplatin (cis-Pt). To fabricate mesoMOF, various amounts of the surfactant (cetyltrimethylammonium bromide: 0.1-0.3 g) and linker (citric acid: 0.05-0.15 g) were added to the reaction mixture, which resulted in different particle sizes and morphologies. MesoMOF quality attributes such as Specific surface area (SSA), total porous volume, and Barrett-Joyner-Halenda (BJH) pore diameter were also determined. At the optimum reaction condition, mesoMOF with a high surface area (1859 m2/g), pore diameter (14.13 nm) and total pore volume (0.314 cm3/g) was attained. In the next step, cis-Pt was actively loaded in the mesoMOF with a high loading capacity (28% w/w), which was remarkably superior to the microporous MOF. Interestingly, in mildly acidic pH (5.5), mesoMOF underwent degradation, resulting in a rapid release of cis-Pt. Cell viability and apoptosis induction assays confirmed the superiority of the cis-Pt loaded mesoMOF over free drug in a resistant ovarian tumor cell line (A2780cp). Altogether, due to their tunable size and morphology, pH-responsiveness, and acceptable tolerability in mice, the mesoMOFs can be regarded as an anti-cancer drug delivery system.
Collapse
Affiliation(s)
- Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soliman Mohammadi Samani
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Chen FE, Mandel RM, Woods JJ, Lee JH, Kim J, Hsu JH, Fuentes-Rivera JJ, Wilson JJ, Milner PJ. Biocompatible metal-organic frameworks for the storage and therapeutic delivery of hydrogen sulfide. Chem Sci 2021; 12:7848-7857. [PMID: 34168838 PMCID: PMC8188460 DOI: 10.1039/d1sc00691f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H2S is hindered by its corrosive and toxic nature. In addition, small molecule H2S donors often generate other reactive and sulfur-containing species upon H2S release, leading to unwanted side effects. Here, we demonstrate that H2S release from biocompatible porous solids, namely metal-organic frameworks (MOFs), is a promising alternative strategy for H2S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H2S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H2S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H2S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H2S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H2S. Overall, our findings suggest that H2S-loaded MOFs represent a new family of easily-handled solid sources of H2S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery.
Collapse
Affiliation(s)
- Faith E Chen
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Ruth M Mandel
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14850 USA
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - José J Fuentes-Rivera
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| |
Collapse
|
24
|
Bahamon D, Anlu W, Builes S, Khaleel M, Vega LF. Effect of Amine Functionalization of MOF Adsorbents for Enhanced CO 2 Capture and Separation: A Molecular Simulation Study. Front Chem 2021; 8:574622. [PMID: 33585395 PMCID: PMC7873881 DOI: 10.3389/fchem.2020.574622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
Different types of amine-functionalized MOF structures were analyzed in this work using molecular simulations in order to determine their potential for post-combustion carbon dioxide capture and separation. Six amine models -of different chain lengths and degree of substitution- grafted to the unsaturated metal sites of the M2(dobdc) MOF [and its expanded version, M2(dobpdc)] were evaluated, in terms of adsorption isotherms, selectivity, cyclic working capacity and regenerability. Good agreement between simulation results and available experimental data was obtained. Moreover, results show two potential structures with high cyclic working capacities if used for Temperature Swing Adsorption processes: mmen/Mg/DOBPDC and mda-Zn/DOBPDC. Among them, the -mmen functionalized structure has higher CO2 uptake and better cyclability (regenerability) for the flue gas mixtures and conditions studied. Furthermore, it is shown that more amine functional groups grafted on the MOFs and/or full functionalization of the metal centers do not lead to better CO2 separation capabilities due to steric hindrances. In addition, multiple alkyl groups bonded to the amino group yield a shift in the step-like adsorption isotherms in the larger pore structures, at a given temperature. Our calculations shed light on how functionalization can enhance gas adsorption via the cooperative chemi-physisorption mechanism of these materials, and how the materials can be tuned for desired adsorption characteristics.
Collapse
Affiliation(s)
- Daniel Bahamon
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Wei Anlu
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Chemical Engineering Department, China University of Petroleum, Dongying, China
| | - Santiago Builes
- Process Engineering Department, EAFIT University, Medellin, Colombia
| | - Maryam Khaleel
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Lourdes F Vega
- Chemical Engineering Department, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Zhang H, Zheng X, Yang LM, Ganz E. Properties and Detailed Adsorption of CO 2 by M 2(dobpdc) with N, N-Dimethylethylenediamine Functionalization. Inorg Chem 2021; 60:2656-2662. [PMID: 33491446 DOI: 10.1021/acs.inorgchem.0c03527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have systematically investigated the CO2 adsorption performance and microscopic mechanism of N,N-dimethylethylenediamine (mm-2) appended M2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate; M = Mg, Sc-Zn) with density functional theory. These calculations show that the mm-2 has strong interactions with the open metal site of these structures via the first amine, and the mm-2 binding energies are generally between 123 and 172 kJ/mol. After the CO2 is attached, the ammonium carbamate molecule is created by insertion. The CO2 adsorption energies (31-81 kJ/mol) depend on the metal used (Mg; Sc-Zn). The microscopic mechanism of the CO2 adsorption process is presented at the atomic level, and the detailed potential energy surface and reaction path information are provided. The CO2 molecule and mm-2 grafted M2(dobpdc) are firstly combined via physical interactions, and then, the complex is converted into an N-coordinated zwitterion intermediate over a large energy barrier (1.02-1.51 eV). Finally, the structure is rearranged into a stable ammonium carbamate configuration through a small energy barrier (0.05-0.25 eV). We hope that this research will contribute to the understanding and production of real-world carbon capture materials.
Collapse
Affiliation(s)
- Hui Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Eric Ganz
- School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Raptopoulou CP. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E310. [PMID: 33435267 PMCID: PMC7826725 DOI: 10.3390/ma14020310] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks represent a porous class of materials that are build up from metal ions or oligonuclear metallic complexes and organic ligands. They can be considered as sub-class of coordination polymers and can be extended into one-dimension, two-dimensions, and three-dimensions. Depending on the size of the pores, MOFs are divided into nanoporous, mesoporous, and macroporous items. The latter two are usually amorphous. MOFs display high porosity, a large specific surface area, and high thermal stability due to the presence of coordination bonds. The pores can incorporate neutral molecules, such as solvent molecules, anions, and cations, depending on the overall charge of the MOF, gas molecules, and biomolecules. The structural diversity of the framework and the multifunctionality of the pores render this class of materials as candidates for a plethora of environmental and biomedical applications and also as catalysts, sensors, piezo/ferroelectric, thermoelectric, and magnetic materials. In the present review, the synthetic methods reported in the literature for preparing MOFs and their derived materials, and their potential applications in environment, energy, and biomedicine are discussed.
Collapse
Affiliation(s)
- Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Attikis, Greece
| |
Collapse
|
27
|
Nelson PN. A theoretical study of the interactions between carbon dioxide and some Group(III) trihalides: Implications in carbon dioxide sequestration. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Lee G, Yoon JH, Kwon K, Han H, Song JH, Lim KS, Lee WR. Dimensional selective syntheses of metal–organic frameworks using mixed organic ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Zhang H, Yang LM, Ganz E. Formation Mechanism of Ammonium Carbamate for CO 2 Uptake in N, N'-Dimethylethylenediamine Grafted M 2(dobpdc). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14104-14112. [PMID: 33170717 DOI: 10.1021/acs.langmuir.0c02750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adsorption properties and formation mechanism of ammonium carbamate for CO2 capture in N,N'-dimethylethylenediamine (mmen) grafted M2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate; M = Mg, Sc-Zn, except Ni) have been studied via density functional theory (DFT) calculations. We see that the mmen molecule is joined to the metal site via a M-N bond and has hydrogen bonding with neighboring mmen molecules. The binding energies of mmen range from 135.4 to 184.0 kJ/mol. CO2 is captured via insertion into the M-N bond of mmen-M2(dobpdc), forming ammonium carbamate. The CO2 binding energies (35.2 to 92.2 kJ/mol) vary with different metal centers. Furthermore, the Bader charge analysis shows that the CO2 molecules acquire 0.42 to 0.47 |e|. This charge is mainly contributed by the mmen, and a small additional amount is from the metal atom bonded with the CO2. The preferred reaction pathway is a two-step reaction. In the first step, the hydrogen bonded complex B changes into an N-coordinated intermediate D with high barriers (0.69 to 1.58 eV). The next step involves the translation and rotation of the chain in the intermediate D, resulting in the formation of the final O-coordinated product I with barriers of 0.22 to 0.61 eV. The higher barriers of CO2 reaction with mmen-M2(dobpdc) relative to attack the primary amine might be due to the larger steric hindrance of mmen. We hope this work will contribute to an improved understanding and development of future amine-grafted materials for efficient CO2 capture.
Collapse
Affiliation(s)
- Hui Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Eric Ganz
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Park J, Park JR, Choe JH, Kim S, Kang M, Kang DW, Kim JY, Jeong YW, Hong CS. Metal-Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50534-50540. [PMID: 33131271 DOI: 10.1021/acsami.0c16224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of indoor CO2 concentration to a safe level is important to human health. Metal-organic-framework-based adsorbents show superior adsorption performance at moderate CO2 concentration compared to other solid adsorbents but suffer from low capacities and high regeneration temperature at indoor CO2 concentrations and poor humidity stability. Herein, we report epn-grafted Mg2(dobpdc) (epn = 1-ethylpropane-1,3-diamine) showing a CO2 capacity of 12.2 wt % at an acceptable concentration of 1000 ppm and a practically low desorption temperature of 70 °C, which surpasses the performance of conventional solid adsorbents under the given conditions. After poly(dimethylsiloxane) coating, this material reveals a significant adsorption amount (∼10 wt %) in humid conditions (up to 98% relative humidity) with structural durability.
Collapse
Affiliation(s)
- Jinkyoung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeoung Ryul Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Saemi Kim
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
31
|
Zhang H, Shang C, Yang LM, Ganz E. Elucidation of the Underlying Mechanism of CO 2 Capture by Ethylenediamine-Functionalized M 2(dobpdc) (M = Mg, Sc-Zn). Inorg Chem 2020; 59:16665-16671. [PMID: 33124798 DOI: 10.1021/acs.inorgchem.0c02654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We, for the first time, systematically investigated the crystal structures, adsorption properties, and microscopic mechanism of CO2 capture with ethylenediamine (en)-appended isostructural M2(dobpdc) materials (M = Mg, Sc-Zn), using spin polarized density functional theory (DFT) calculations. The binding energies of en range from 142 to 210 kJ/mol. The weakest binding materials are en-Cr2(dobpdc) and en-Cu2(dobpdc). Two typical models, the pair model and the chain model, have been considered for CO2 adsorption. Generally, the chain model is more stable than the pair model. The CO2 adsorption energies of the chain model are in the range of 30-96 kJ/mol, with a strong metal dependence. Among these, the en-Sc2(dobpdc) and en-Cu2(dobpdc) have the highest and lowest CO2 adsorption energies, respectively. Moreover, the dynamic progress of CO2 adsorption has been unveiled via exploration of the full reaction pathway, including transition states and intermediates. First, the CO2 molecule interacts with en-MOFs to form a physisorbed complex with a shallow potential well. This is followed by overcoming a relatively large energy barrier to form a chemisorbed complex. Finally, ammonium carbamate is formed along the one-dimensional channels within the pore with a small energy barrier for configuration transformation. These results agree well with the experimental observations. Understanding the detailed microscopic mechanism of CO2 capture is quite crucial for improving our fundamental knowledge base and potential future applications. This work will improve our understanding of CO2 adsorption with amine functionalized MOFs. We expect our results to stimulate future experimental and theoretical research and advance the development of this field.
Collapse
Affiliation(s)
- Hui Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunli Shang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Eric Ganz
- School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Zhang H, Yang LM, Pan H, Ganz E. Disclosing the microscopic mechanism and adsorption properties of CO 2 capture in N-isopropylethylenediamine appended M 2(dobpdc) series. Phys Chem Chem Phys 2020; 22:24614-24623. [PMID: 33094753 DOI: 10.1039/d0cp04068a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detailed picture of the microscopic mechanism for CO2 capture in N-isopropylethylenediamine (i-2) functionalized M2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate; M = Mg, Sc-Zn) has been determined for the first time via systematic computations with van der Waals (vdW) corrected density functional theory (DFT) methods. The results show that acting as a Lewis base, the i-2 molecule can strongly interact with the acidic open metal sites of M2(dobpdc) via its primary amine with binding energies of 132 to 178 kJ mol-1 for different metals. After exposure to gaseous CO2, CO2 is captured by inserting into the metal-N bond. The corresponding CO2 binding energies (43-69 kJ mol-1) vary depending on the metal centers. i-2-Sc2(dobpdc) and i-2-Mg2(dobpdc) with high CO2 binding energies have promising potential for CO2 capture. Moreover, the results demonstrate that the CO2 capture process involves two steps, consisting of simultaneous nucleophilic attack of the CO2 onto the metal-bound N atom with proton transfer. This results in the formation of a zwitterion intermediate (step1), and then rearrangement of the zwitterion intermediate into the final product ammonium carbamate (step2). The first step with relatively high barriers (0.99-1.49 eV) is rate-determining. The second step with low barriers (less than 0.50 eV) can easily occur and will promote the reaction. This work uncovers the complicated microscopic mechanism of CO2 capture with i-2 functionalized MOFs at the molecular level. This study provides fundamental understanding of the adsorption process and insights into the design and synthesis of highly efficient CO2 capture materials.
Collapse
Affiliation(s)
- Hui Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | |
Collapse
|
33
|
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-Based Membranes for Gas Separations. Chem Rev 2020; 120:8161-8266. [PMID: 32608973 DOI: 10.1021/acs.chemrev.0c00119] [Citation(s) in RCA: 508] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.
Collapse
Affiliation(s)
- Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick A Asinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moon Joo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Korea
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Zhang H, Yang LM, Ganz E. Adsorption Properties and Microscopic Mechanism of CO 2 Capture in 1,1-Dimethyl-1,2-ethylenediamine-Grafted Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18533-18540. [PMID: 32227842 DOI: 10.1021/acsami.0c01927] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The adsorption properties and microscopic mechanism of CO2 adsorption in 1,1-dimethyl-1,2-ethylenediamine (dmen) functionalized M2(dobpdc) (dobpdc4-=4,4'-dioxidobiphenyl-3,3'-dicarboxylate; M = Mg, Sc-Zn) have been completely unveiled for the first time via comprehensive investigations based on first-principles density functional theory (DFT) calculations. The results show that for the primary-primary amine, dmen prefers to interact with the open metal site of M2(dobpdc) via the end with smaller steric hindrance. The binding energies of dmen with MOFs are in the range of 104-174 kJ/mol. In presence of CO2, it fully inserts into the metal-N bond, forming ammonium carbamate. The CO2 binding energies vary from 53 to 89 kJ/mol, showing strong metal dependence. Among the 11 metals, dmen-Sc2(dobpdc) and dmen-Mg2(dobpdc) have the highest CO2 binding energies of 89 and 84 kJ/mol, respectively, and may have large CO2 adsorption capacity for practical applications. More importantly, the microscopic CO2 capture process of dmen-M2(dobpdc) is revealed at the atomic level. The whole reaction process includes two steps, that is, formation of zwitterion intermediate (step 1) and rearrangement of the zwitterion intermediate (step 2). The first step in which nucleophilic addition between CO2 and the metal-bound amine and proton transfer from the metal-bound amine to free amine simultaneously occur is a rate-determining step, with higher energy barriers (0.99-1.35 eV). The second step with much lower barriers (maximum of 0.16 eV) is extremely easy, which can promote the whole CO2 uptake process in dmen-M2(dobpdc). This study provides a fundamental understanding of the underlying mechanism of the rather complicated CO2 adsorption process and sheds important insights on design, synthesis, and optimization of highly efficient CO2 capture materials.
Collapse
Affiliation(s)
- Hui Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Eric Ganz
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Martell JD, Milner PJ, Siegelman RL, Long JR. Kinetics of cooperative CO 2 adsorption in diamine-appended variants of the metal-organic framework Mg 2(dobpdc). Chem Sci 2020; 11:6457-6471. [PMID: 34094111 PMCID: PMC8152673 DOI: 10.1039/d0sc01087a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon capture and sequestration is a key element of global initiatives to minimize anthropogenic greenhouse gas emissions. Although many investigations of new candidate CO2 capture materials focus on equilibrium adsorption properties, it is also critical to consider adsorption/desorption kinetics when evaluating adsorbent performance. Diamine-appended variants of the metal–organic framework Mg2(dobpdc) (dobpdc4− = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are promising materials for CO2 capture because of their cooperative chemisorption mechanism and associated step-shaped equilibrium isotherms, which enable large working capacities to be accessed with small temperature swings. However, the adsorption/desorption kinetics of these unique materials remain understudied. More generally, despite the necessity of kinetics characterization to advance adsorbents toward commercial separations, detailed kinetic studies of metal–organic framework-based gas separations remain rare. Here, we systematically investigate the CO2 adsorption kinetics of diamine-appended Mg2(dobpdc) variants using a thermogravimetric analysis (TGA) assay. In particular, we examine the effects of diamine structure, temperature, and partial pressure on CO2 adsorption and desorption kinetics. Importantly, most diamine-appended Mg2(dobpdc) variants exhibit an induction period prior to reaching the maximum rate of CO2 adsorption, which we attribute to their unique cooperative chemisorption mechanism. In addition, these materials exhibit inverse Arrhenius behavior, displaying faster adsorption kinetics and shorter induction periods at lower temperatures. Using the Avrami model for nucleation and growth kinetics, we determine rate constants for CO2 adsorption and quantitatively compare rate constants among different diamine-appended variants. Overall, these results provide guidelines for optimizing adsorbent design to facilitate CO2 capture from diverse target streams and highlight kinetic phenomena relevant for other materials in which cooperative chemisorption mechanisms are operative. An in-depth investigation of the CO2 adsorption kinetics of a promising class of cooperative carbon capture materials offers new insight into their structure-performance properties.![]()
Collapse
Affiliation(s)
- Jeffrey D Martell
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Phillip J Milner
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | | | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley CA 94720 USA .,Department of Chemical and Biomolecular Engineering, University of California Berkeley CA 94720 USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
36
|
Mao VY, Milner PJ, Lee JH, Forse AC, Kim EJ, Siegelman RL, McGuirk CM, Porter-Zasada LB, Neaton JB, Reimer JA, Long JR. Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:19468-19477. [PMID: 31880046 DOI: 10.1002/anie.201915561] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 11/11/2022]
Abstract
A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations.
Collapse
Affiliation(s)
- Victor Y Mao
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Phillip J Milner
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jung-Hoon Lee
- Department of Physics, The University of California, Berkeley, Berkeley, CA, 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.,The Kavli Energy Nanosciences Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Berkeley Energy and Climate Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Eugene J Kim
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rebecca L Siegelman
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - C Michael McGuirk
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Leo B Porter-Zasada
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeffrey B Neaton
- Department of Physics, The University of California, Berkeley, Berkeley, CA, 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.,The Kavli Energy Nanosciences Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Berkeley Energy and Climate Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Mao VY, Milner PJ, Lee J, Forse AC, Kim EJ, Siegelman RL, McGuirk CM, Porter‐Zasada LB, Neaton JB, Reimer JA, Long JR. Cooperative Carbon Dioxide Adsorption in Alcoholamine‐ and Alkoxyalkylamine‐Functionalized Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Victor Y. Mao
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
| | - Phillip J. Milner
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Jung‐Hoon Lee
- Department of Physics The University of California, Berkeley Berkeley CA 94720 USA
- The Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley CA 94720 USA
- The Kavli Energy Nanosciences Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Alexander C. Forse
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
- Berkeley Energy and Climate Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Eugene J. Kim
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Rebecca L. Siegelman
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - C. Michael McGuirk
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Leo B. Porter‐Zasada
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Jeffrey B. Neaton
- Department of Physics The University of California, Berkeley Berkeley CA 94720 USA
- The Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley CA 94720 USA
- The Kavli Energy Nanosciences Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
- Berkeley Energy and Climate Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Jeffrey R. Long
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
38
|
Zhang R, Huang JH, Meng DX, Ge FY, Wang LF, Xu YK, Liu XG, Meng MM, Lu ZZ, Zheng HG, Huang W. Three metal–organic framework isomers of different pore sizes for selective CO2 adsorption and isomerization studies. Dalton Trans 2020; 49:5618-5624. [DOI: 10.1039/d0dt00793e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three MOF isomers including framework-catenation and framework-topological isomers were synthesized for adsorbing carbon dioxide with high selectivity.
Collapse
|
39
|
|
40
|
Kim H, Lee HY, Kang DW, Kang M, Choe JH, Lee WR, Hong CS. Control of the Metal Composition in Bimetallic Mg/Zn(dobpdc) Constructed from a One-Dimensional Zn-Based Template. Inorg Chem 2019; 58:14107-14111. [DOI: 10.1021/acs.inorgchem.9b02126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Young Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Woo Ram Lee
- Department of Chemistry, Sejong University, Seoul 05006, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki NS, Suib S, Srivastava R. Trends in Solid Adsorbent Materials Development for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34533-34559. [PMID: 31437393 DOI: 10.1021/acsami.9b08487] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A recent report from the United Nations has warned about the excessive CO2 emissions and the necessity of making efforts to keep the increase in global temperature below 2 °C. Current CO2 capture technologies are inadequate for reaching that goal, and effective mitigation strategies must be pursued. In this work, we summarize trends in materials development for CO2 adsorption with focus on recent studies. We put adsorbent materials into four main groups: (I) carbon-based materials, (II) silica/alumina/zeolites, (III) porous crystalline solids, and (IV) metal oxides. Trends in computational investigations along with experimental findings are covered to find promising candidates in light of practical challenges imposed by process economics.
Collapse
Affiliation(s)
- Maryam Pardakhti
- Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Tahereh Jafari
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Zachary Tobin
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Biswanath Dutta
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ehsan Moharreri
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Nikoo S Shemshaki
- Department of Biomedical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Steven Suib
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
42
|
Siegelman RL, Milner PJ, Forse AC, Lee JH, Colwell KA, Neaton JB, Reimer JA, Weston SC, Long JR. Water Enables Efficient CO 2 Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal-Organic Framework. J Am Chem Soc 2019; 141:13171-13186. [PMID: 31348649 DOI: 10.1021/jacs.9b05567] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supported by increasingly available reserves, natural gas is achieving greater adoption as a cleaner-burning alternative to coal in the power sector. As a result, carbon capture and sequestration from natural gas-fired power plants is an attractive strategy to mitigate global anthropogenic CO2 emissions. However, the separation of CO2 from other components in the flue streams of gas-fired power plants is particularly challenging due to the low CO2 partial pressure (∼40 mbar), which necessitates that candidate separation materials bind CO2 strongly at low partial pressures (≤4 mbar) to capture ≥90% of the emitted CO2. High partial pressures of O2 (120 mbar) and water (80 mbar) in these flue streams have also presented significant barriers to the deployment of new technologies for CO2 capture from gas-fired power plants. Here, we demonstrate that functionalization of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with the cyclic diamine 2-(aminomethyl)piperidine (2-ampd) produces an adsorbent that is capable of ≥90% CO2 capture from a humid natural gas flue emission stream, as confirmed by breakthrough measurements. This material captures CO2 by a cooperative mechanism that enables access to a large CO2 cycling capacity with a small temperature swing (2.4 mmol CO2/g with ΔT = 100 °C). Significantly, multicomponent adsorption experiments, infrared spectroscopy, magic angle spinning solid-state NMR spectroscopy, and van der Waals-corrected density functional theory studies suggest that water enhances CO2 capture in 2-ampd-Mg2(dobpdc) through hydrogen-bonding interactions with the carbamate groups of the ammonium carbamate chains formed upon CO2 adsorption, thereby increasing the thermodynamic driving force for CO2 binding. In light of the exceptional thermal and oxidative stability of 2-ampd-Mg2(dobpdc), its high CO2 adsorption capacity, and its high CO2 capture rate from a simulated natural gas flue emission stream, this material is one of the most promising adsorbents to date for this important separation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey B Neaton
- Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States
| | | | - Simon C Weston
- Corporate Strategic Research , ExxonMobil Research and Engineering Company , Annandale , New Jersey 08801 , United States
| | | |
Collapse
|
43
|
Kang M, Kang DW, Hong CS. Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation. Dalton Trans 2019; 48:2263-2270. [DOI: 10.1039/c8dt04339f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-synthetic methods are considered facile and effective for adjusting a material's properties. This frontiers article highlights recent advances in the post-synthetic modifications of MOF-74 type frameworks, whose high-density exposed metal sites are grafted by various diamines, leading to the tuning of CO2 adsorption capabilities.
Collapse
Affiliation(s)
- Minjung Kang
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Dong Won Kang
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
44
|
Jahandar Lashaki M, Khiavi S, Sayari A. Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle. Chem Soc Rev 2019; 48:3320-3405. [PMID: 31149678 DOI: 10.1039/c8cs00877a] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review focuses on important stability issues facing amine-functionalized CO2 adsorbents, including amine-grafted and amine-impregnated silicas, zeolites, metal-organic frameworks and carbons. During the past couple of decades, major advances were achieved in understanding and improving the performance of such materials, particularly in terms of CO2 adsorptive properties such as adsorption capacity, selectivity and kinetics. Nonetheless, to pave the way toward commercialization of adsorption-based CO2 capture technologies, in addition to other attributes, adsorbent materials should be stable over many thousands of adsorption-desorption cycles. Adsorbent stability, which is of utmost importance as it determines adsorbent lifetime and operational costs of CO2 capture, is a multifaceted issue involving thermal, hydrothermal, and chemical stability. Here we discuss the impact of the adsorbent physical and chemical properties, the feed gas composition and characteristics, and the adsorption-desorption operational parameters on the long-term stability of amine-functionalized CO2 adsorbents. We also review important insights associated with the underlying deactivation pathways of the adsorbents upon exposure to high temperature, oxygen, dry CO2, sulfur-containing compounds, nitrogen oxides, oxygen and steam. Finally, specific recommendations are provided to address outstanding stability issues.
Collapse
Affiliation(s)
- Masoud Jahandar Lashaki
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | | | | |
Collapse
|
45
|
Forse AC, Milner PJ, Lee JH, Redfearn HN, Oktawiec J, Siegelman RL, Martell JD, Dinakar B, Porter-Zasada LB, Gonzalez MI, Neaton JB, Long JR, Reimer JA. Elucidating CO 2 Chemisorption in Diamine-Appended Metal-Organic Frameworks. J Am Chem Soc 2018; 140:18016-18031. [PMID: 30501180 DOI: 10.1021/jacs.8b10203] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal-organic frameworks of the type diamine-M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) have shown promise for carbon-capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van-der-Waals-corrected density functional theory (DFT) calculations for 13 diamine-M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products, ammonium carbamate chains and carbamic acid pairs, can be readily distinguished and that ammonium carbamate chain formation dominates for diamine-Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves the formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine-M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine-M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.
Collapse
Affiliation(s)
| | - Phillip J Milner
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jung-Hoon Lee
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | | | - Rebecca L Siegelman
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | - Bhavish Dinakar
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | | | - Jeffrey B Neaton
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States
| | - Jeffrey R Long
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jeffrey A Reimer
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
46
|
Kundu J, Stilck JF, Lee JH, Neaton JB, Prendergast D, Whitelam S. Cooperative Gas Adsorption without a Phase Transition in Metal-Organic Frameworks. PHYSICAL REVIEW LETTERS 2018; 121:015701. [PMID: 30028153 DOI: 10.1103/physrevlett.121.015701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 06/08/2023]
Abstract
Cooperative adsorption of gases by porous frameworks, which permits more efficient uptake and removal than the more usual noncooperative (Langmuir-type) adsorption, usually results from a phase transition of the framework. Here we show how cooperativity emerges in the class of metal-organic frameworks mmen-M_{2}(dobpdc) in the absence of a phase transition. Our study provides a microscopic understanding of the emergent features of cooperative binding, including the position, slope, and height of the isotherm step, and indicates how to optimize gas storage and separation in these materials.
Collapse
Affiliation(s)
- Joyjit Kundu
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jürgen F Stilck
- Instituto de Física and National Institute of Science and Technology for Complex Systems, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-346-Niterói, RJ, Brazil
| | - Jung-Hoon Lee
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720-7300, USA
| | - Jeffrey B Neaton
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720-7300, USA
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
47
|
Emerson AJ, Chahine A, Batten SR, Turner DR. Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Lee WR, Kim JE, Lee SJ, Kang M, Kang DW, Lee HY, Hiremath V, Seo JG, Jin H, Moon D, Cho M, Jung Y, Hong CS. Diamine-Functionalization of a Metal-Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties. CHEMSUSCHEM 2018; 11:1694-1707. [PMID: 29603670 DOI: 10.1002/cssc.201800363] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Indexed: 06/08/2023]
Abstract
For real-world postcombustion applications in the mitigation of CO2 emissions using dry sorbents, adsorption and desorption behaviors should be controlled to design and fabricate prospective materials with optimal CO2 performances. Herein, we prepared diamine-functionalized Mg2 (dobpdc) (H4 dobpdc=4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylic acid). (1-diamine) with ethylenediamine (en), primary-secondary (N-ethylethylenediamine-een and N-isopropylethylenediamine-ipen), primary-tertiary, and secondary-secondary diamines. A slight alteration of the number of alkyl substituents on the diamines and their alkyl chain length dictates the desorption temperature (Tdes ) at 100 % CO2 , desorption characteristics, and ΔT systematically to result in the tuning of the working capacity. The existence of bulky substituents on the diamines improves the framework stability upon exposure to O2 , SO2 , and water vapor, relevant to real flue-gas conditions. Bulky substituents are also responsible for an interesting two-step behavior observed for the ipen case, as revealed by DFT calculations. Among the diamine-appended metal-organic frameworks, 1-een, which has the required adsorption and desorption properties, is a promising material for sorbent-based CO2 capture processes. Hence, CO2 performance and framework durability can be tailored by the judicial selection of the diamine structure, which enables property design at will and facilitates the development of desirable CO2 -capture materials.
Collapse
Affiliation(s)
- Woo Ram Lee
- Department of Chemistry, Sejong University, Seoul, 05006, Republic of Korea
| | - Jeong Eun Kim
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Sung Jin Lee
- Graduate school of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Hwa Young Lee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Vishwanath Hiremath
- Department of Energy Science and Technology, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 449-728, Republic of Korea
| | - Jeong Gil Seo
- Department of Energy Science and Technology, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 449-728, Republic of Korea
| | - Hailian Jin
- R&D Team, Korea Carbon Capture & Sequestration R&D Center, Daejeon, 305-343, Republic of Korea
| | - Dohyun Moon
- Beamline Division, Pohang Accelerator Laboratory, Pohang, Kyungbuk, 790-784, Republic of Korea
| | - Moses Cho
- Graduate school of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Yousung Jung
- Graduate school of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| |
Collapse
|
49
|
Wang Z, Luo X, Zheng B, Huang L, Hang C, Jiao Y, Cao X, Zeng W, Yun R. Highly Selective Carbon Dioxide Capture and Cooperative Catalysis of a Water-Stable Acylamide-Functionalized Metal-Organic Framework. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701404] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Xin Luo
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Lu Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Cheng Hang
- State Key Laboratory of Coordination Chemistry; Nanjing University; 210023 Nanjing P. R. China
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Xiyang Cao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Wenjiang Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers; School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan P. R. China
| | - Ruirui Yun
- College of Chemistry and Materials Science; Anhui Normal University; 241000 Wuhu P. R. China
| |
Collapse
|
50
|
Forse AC, Gonzalez MI, Siegelman RL, Witherspoon VJ, Jawahery S, Mercado R, Milner PJ, Martell JD, Smit B, Blümich B, Long JR, Reimer JA. Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal-Organic Framework Zn 2(dobpdc). J Am Chem Soc 2018; 140:1663-1673. [PMID: 29300483 PMCID: PMC8240119 DOI: 10.1021/jacs.7b09453] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO2 within the pores of Zn2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO2 allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO2 diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D∥ = (5.8 ± 0.1) × 10-9 m2 s-1 at a pressure of 625 mbar CO2), we unexpectedly find that CO2 is also able to diffuse between the hexagonal channels in the crystallographic ab plane (D⊥ = (1.9 ± 0.2) × 10-10 m2 s-1), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO2 transport in a metal-organic framework with nominally one-dimensional porosity.
Collapse
Affiliation(s)
- Alexander C. Forse
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, U.S.A
| | - Miguel I. Gonzalez
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Rebecca L. Siegelman
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Velencia J. Witherspoon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
| | - Sudi Jawahery
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
| | - Rocio Mercado
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
| | - Phillip J. Milner
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Jeffrey D. Martell
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Berend Smit
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fedérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Aachen, Germany
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A
| |
Collapse
|