1
|
Bhutani N, Murugesan P, Baro S, Koner RR. Layered double hydroxide-derived bimetallic-MOF as a promising platform: Urea-coupled water oxidation and supercapattery-driven water electrolyzer. J Colloid Interface Sci 2025; 683:1087-1099. [PMID: 39787732 DOI: 10.1016/j.jcis.2024.12.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm-2 during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability. The similar effective catalytic trend was noticed during the urea-assisted water oxidation process. The developed catalyst required only a potential of 1.39 V vs. RHE at 100 mA cm-2 towards urea oxidation reaction (UOR). Moreover, the urea-assisted overall water-splitting voltage was found to be 1.5 V at the current density of 10 mA cm-2. Furthermore, the same catalyst was explored as an energy-storage material for supercapattery application with an aerial specific capacity value of 2613.9 mC cm-2 at 1 mA cm-2 which was found to be 1.5 times higher than NiMn-LDH (1724.3 mC cm-2). Additionally, an aqueous asymmetric supercapattery device was fabricated which demonstrated the best electrochemical performance and provided a maximum energy density of 64.1 Wh kg-1 at a power density of 493 W kg-1 with 77.8 percent capacity retention after a continuous run of 8000 cycles at 10 mA cm-2 current density. Hence, the multifaceted properties of energy conversion and storage of LDH-D NiMn-MOF outline its performance in real-world applications.
Collapse
Affiliation(s)
- Nitika Bhutani
- School of Chemical sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Premkumar Murugesan
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Sushmita Baro
- School of Chemical sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Rik Rani Koner
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
| |
Collapse
|
2
|
Guo X, Feng S, Peng Y, Li B, Zhao J, Xu H, Meng X, Zhai W, Pang H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem 2025; 463:141387. [PMID: 39332375 DOI: 10.1016/j.foodchem.2024.141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Heavy metal ions are one of the main sources of water pollution, which has become a major global problem. Given the growing need for heavy metal ion detection, electrochemical sensor stands out for its high sensitivity and efficiency. Metal-organic frameworks (MOFs) have garnered much interest as electrode modifiers for electrochemical detection of heavy metal ions owing to their significant specific surface area, tailored pore size, and catalytic activity. This review summarizes the progress of MOF-based materials, including pristine MOFs and MOF composites, in the electrochemical detection of various heavy metal ions. The synthetic methods of pristine MOFs, the detection mechanisms of heavy metal ions and the modification strategies of MOFs are introduced. Besides, the diverse applications of MOF-based materials in detecting both single and multiple heavy metal ions are presented. Furthermore, we present the current challenges and prospects for MOF-based materials in electrochemical heavy metal ion detection.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Siyi Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yi Peng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 211189, PR China
| | - Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Weiwei Zhai
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, PR China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
3
|
Habibi B, Soleimani Abhari P, Eisari M, Morsali A, Yan XW. Mixed-Linker Zr-Metal-Organic Framework with Improved Lewis Acidic Sites for CO 2 Fixation Reaction Catalysis. Inorg Chem 2024; 63:21354-21363. [PMID: 39432761 DOI: 10.1021/acs.inorgchem.4c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2024]
Abstract
Applying the mixed-linker strategy in synthesizing metal-organic frameworks (MOFs) has drawn considerable attention as a heterogeneous catalyst owing to their easy synthesis and different functional ligands in their frameworks. Following this strategy, we have developed a mixed linker Zr(IV)-based MOF, [Zr6O4(OH)4(FUM)n(PZDC-NO2)6-n] (PZDC-NO2 = 4-nitro-3,5-pyrazoledicarboxylic acid, FUM = fumaric acid) denoted as MOF-801(PZDC-NO2) synthesized via this strategy which possess an electron-withdrawing group (-NO2) on secondary linkers. The MOF-801(PZDC-NO2) has been fully characterized via various analyses, such as Fourier transform infrared, powder X-ray diffraction, 13C/1H nuclear magnetic resonance, XPS, TGA, and N2 adsorption/desorption, SEM, EDX, etc. By considering the concurrent existence of acid-base active sites and the synergistic role of these sites, this mixed-linker MOF was used as a catalyst for the cycloaddition reaction of CO2 and epoxides under mild without-solvent conditions. MOF-801(PZDC-NO2) displays significant catalytic performance by producing the highest catalytic conversion of epoxide to cyclic carbonate (93%) with a turnover number of 130.7 in 8 h reaction time and 100 °C temperature under low-pressure CO2 pressure. The mixed-linker Zr-MOF exhibits exceptional stability and reusability, maintaining its structure and functionality after consecutive cycles of utilization. Finally, the reaction mechanism was further investigated by density functional theory calculations. The total energy of the reactants, intermediates, and products involved in the process.
Collapse
Affiliation(s)
- Behnam Habibi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175 Tehran, Iran
| | - Paria Soleimani Abhari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175 Tehran, Iran
| | - Mohsen Eisari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175 Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175 Tehran, Iran
| | - Xiao-Wei Yan
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, No. 18 West Ring Road, Hezhou, Guangxi 542899, P. R. China
| |
Collapse
|
4
|
Musa EN, Yadav AK, Smith KT, Jung MS, Stickle WF, Eschbach P, Ji X, Stylianou KC. Boosting Photocatalytic Hydrogen Production by MOF-Derived Metal Oxide Heterojunctions with a 10.0 % Apparent Quantum Yield. Angew Chem Int Ed Engl 2024; 63:e202405681. [PMID: 38985847 DOI: 10.1002/anie.202405681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Photocatalytic hydrogen production offers an alternative pathway to establish a sustainable energy economy, utilizing the Earth's natural sunlight and water resources to address environmental concerns associated with fossil fuel combustion. While numerous photoactive materials exhibit high potential for generating hydrogen from water, the synergy achieved by combining two different materials with complementary properties in the form of heterojunctions can significantly enhance the rate of hydrogen production and quantum efficiency. Our study describes the design and generation of the metal-organic framework-derived (MOF) metal oxide heterojunction herein referred to as RTTA, composed of RuO2/N,S-TiO2. The RuO2/N,S-TiO2 is generated through the pyrolysis of MOFs, Ru-HKUST-1, and the amino-functionalized MIL-125-NH2 in the presence of thiourea. Among the various RTTA materials tested, RTTA-1, characterized by the lowest RuO2 content, exhibited the highest hydrogen evolution rate, producing 10,761 μmol ⋅ hr-1 ⋅ g-1 of hydrogen with an apparent quantum yield of 10.0 % in pure water containing glycerol. In addition to RTTA-1, we generated two other MOF-derived metal oxide heterojunctions, namely ZTTA-1 (ZnO/N,S-TiO2) and ITTA-1 (In2O3/N,S-TiO2). These heterojunctions were tested for their photocatalytic activity, leading to apparent quantum yields of 0.7 % and 0.3 %, respectively. The remarkable photocatalytic activity observed in RTTA-1 is thought to be attributed to the synergistic effects arising from the combination of metallic properties inherent in the metal oxides, complemented by the presence of suitable band alignment, porosity, and surface properties inherited from the parent MOFs. These properties enhance electron transfer and restrict hole movement. The photocatalytic efficiency of RTTA-1 was further demonstrated in actual water samples, producing hydrogen with a rate of 8,190 μmol ⋅ hr-1 ⋅ g-1 in tap water, and 6,390 μmol ⋅ hr-1 ⋅ g-1 in river water.
Collapse
Affiliation(s)
- Emmanuel N Musa
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Ankit K Yadav
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Kyle T Smith
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Min Soo Jung
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - William F Stickle
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR-97331-4003, USA
| | - Peter Eschbach
- Electron Microscopy Facility, Linus Pauling Science Center, Corvallis, Oregon, 97331, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| |
Collapse
|
5
|
Leburu E, Qiao Y, Wang Y, Yang J, Liang S, Yu W, Yuan S, Duan H, Huang L, Hu J, Hou H. Flexible electronics for heavy metal ion detection in water: a comprehensive review. Biomed Microdevices 2024; 26:30. [PMID: 38913209 DOI: 10.1007/s10544-024-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/05/2024] [Indexed: 06/25/2024]
Abstract
Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.
Collapse
Affiliation(s)
- Ely Leburu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuting Qiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanshen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Liang Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
6
|
Hani A, Haikal RR, El-Mehalmey WA, Safwat Y, Alkordi MH. Durable and recyclable MOF@polycaprolactone mixed-matrix membranes with hierarchical porosity for wastewater treatment. NANOSCALE 2023. [PMID: 38018685 DOI: 10.1039/d3nr04044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2023]
Abstract
With the fast-growing global water crisis, the development of novel technologies for water remediation and reuse is crucial. Industrial wastewater especially contains various toxic pollutants that pose an additional threat to the environment; thus, efficient removal of such contaminants can ensure safe reprocessing of industrial wastewater, thereby alleviating the demand for fresh water. Herein, we describe a novel and efficient approach for preparing porous polycaprolactone (PCL) membranes with a hierarchical architecture via a simple solvent/non-solvent methodology. A mixed-matrix membrane (MMM) was further constructed utilizing an amine-functionalized metal-organic framework as the sorbent filler nanoparticles and PCL as the polymer support matrix (MOF@PCL) for wastewater treatment applications. The MOF@PCL MMM demonstrated homogeneous morphology as well as exceptional performance towards the removal of both cationic (methylene blue, MB) and anionic (methyl orange, MO) organic dyes, where the maximum adsorption capacities reached 309 mg g-1 and 208 mg g-1, respectively. Kinetic and thermodynamic investigations revealed that the adsorption process was endothermic with a fast intraparticle diffusion rate constant. The MOF@PCL MMM also displayed excellent mechanical stability and recyclability, where the removal efficiency was maintained after 10 cycles.
Collapse
Affiliation(s)
- Amal Hani
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Rana R Haikal
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Worood A El-Mehalmey
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Youssef Safwat
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 6th of October City, Giza, Egypt.
| |
Collapse
|
7
|
Salimi S, F Farnia SM, Akhbari K, Tavasoli A. Engineered Catalyst Based on MIL-68(Al) with High Stability for Hydrogenation of Carbon Dioxide and Carbon Monoxide at Low Temperature. Inorg Chem 2023; 62:17588-17601. [PMID: 37856844 DOI: 10.1021/acs.inorgchem.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2023]
Abstract
Today, the importance of decreasing and converting COx gases from the atmosphere into value-added chemicals by catalytic hydrogenation reactions has become one crucial challenge. In the current work, to facilitate the hydrogenation of COx, several mesoporous alumina catalysts with high efficiency and stability were synthesized using the MIL-68(Al) platform, a nanoporous MOF with a high surface area as a precatalyst, encapsulating nickel or nickel-iron nanoparticles (NPs). After removing the organic linker of MIL-68(Al) by calcination in air, two types of catalysts, promoted and unpromoted, were obtained with various loads of nickel and iron. A set of analyses (PXRD, BET-N2, TEM, FE-SEM, ICP-OES, EDX-map, CO2-TPD, H2-TPR, and H2-TPD) were performed to evaluate the physicochemical properties of catalysts. Based on the analysis results, the promoted catalyst had smaller particles and pores due to the effective and uniform distribution of nickel NPs. Also, H2-TPR and CO2-TPD results in samples containing Fe promoter demonstrated the facilitation of the reduction process and the adsorption and activation of CO2, respectively. The results of CO2 methanation indicated an improved catalytic performance for promoted samples, especially at low temperatures (200-300 °C), compared to unpromoted catalysts. 5Fe·15Ni@Al2O3 MIL-68(Al) catalyst displayed the best performance compared to other catalysts, with a conversion of 92.4% and selectivity of 99.6% at 350 °C and GHSV = 2500 h-1. Moreover, the 5Fe·15Ni@Al2O3 MIL-68(Al) catalyst facilitated the CO2 methanation reaction by reducing the activation energy to 42.5 kJ mol-1 compared with other reported catalysts. Both types of catalysts performed 100% hydrogenation of CO to CH4 with full selectivity at 250 °C and exhibited high stability for at least 100 h at 300 °C. Notably, such high significant catalytic performance is only achieved by the usage of the "MOFs templating strategy" due to the high surface area for the effective distribution of NPs, the strong metal-support interaction, and the formation of nickel aluminate species, preventing the sintering of NPs.
Collapse
Affiliation(s)
- Saeideh Salimi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran
| | - S Morteza F Farnia
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran
| | - Ahmad Tavasoli
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran
| |
Collapse
|
8
|
Lam PK, Liao JJ, Lin MC, Li YH, Wang TH, Huang HK, Hsu YA, Hsieh HYP, Kuan PY, Chen CT, Hao GX, Tsung CK, Wu KCW, Šutka A, Kinka M, Chou LY, Shieh FK. Controlled Encapsulation of Gold Nanoparticles into Zr-Metal-Organic Frameworks with Improved Detection Limitation of Volatile Organic Compounds via Surface-Enhanced Raman Scattering. Inorg Chem 2023; 62:14896-14901. [PMID: 37678159 DOI: 10.1021/acs.inorgchem.3c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/09/2023]
Abstract
Volatile organic compounds (VOCs) have harmful effects on human health and the environment but detecting low levels of VOCs is challenging due to a lack of reliable biomarkers. However, incorporating gold nanoparticles (Au NPs) into metal-organic frameworks (MOFs) shows promise for VOC detection. In this study, we developed nanoscale Au@UiO-66 that exhibited surface-enhanced Raman scattering (SERS) activity even at very low levels of toluene vapors (down to 1.0 ppm) due to the thickness of the shell and strong π-π interactions between benzenyl-type linkers and toluene. The UiO-66 shell also increased the thermal stability of the Au NPs, preventing aggregation up to 550 °C. This development may be useful for sensitive detection of VOCs for environmental protection purposes.
Collapse
Affiliation(s)
- Phuc Khanh Lam
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jian-Jie Liao
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Miao-Chun Lin
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Hsiu Li
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Hao Wang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Hsin-Kai Huang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-An Hsu
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | | | - Pu-Yun Kuan
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Tien Chen
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Guo-Xiu Hao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chia-Kuang Tsung
- Boston College Chemistry Department, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan
| | - Andris Šutka
- Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, Riga 1048, Latvia
| | - Martynas Kinka
- Faculty of Physics, Vilnius University, Sauletekio Avenue 3, Vilnius 10257, Lithuania
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
9
|
Wang Y, Zhang Q. Temperature-dependent tailoring of the pore structure based on MOF-derived carbon electrodes for electrochemical capacitors. RSC Adv 2023; 13:18145-18155. [PMID: 37333728 PMCID: PMC10269469 DOI: 10.1039/d3ra02451b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
The pore structures of carbon play a critical role in the charge storage process of electrochemical capacitors; however, the involvement of other varying characteristics, such as electrical conductivity and surface functionalities, complicate the research of the pore size effects on various electrochemical phenomena. In this study, by carbonizing MOF-5 at a selected temperature range of 500-700 °C, a series of MOF-derived carbon materials were obtained with pore size distribution concentrated in different size ranges while admitting similar results in the graphitization degree and surface functionalities. The related morphological changes of ZnO were systematically investigated by changing the carbonization temperature and dwelling time, demonstrating a "from thin to thick, from inside to outside" growth routine of ZnO crystals. With the pore size approximated as the sole variable, the as-assembled electrochemical capacitors present a linear relationship between the 1-10 nm pores and the impedance resistance, which for the first time demonstrate how 1-10 nm pores is beneficial to ion diffusion. The results of this study not only provide a useful approach to manipulating the pore structure in carbon electrodes but also pave the way to establish the numerical relationship between the pore structure and various phenomena in electrochemistry or other related areas.
Collapse
Affiliation(s)
- Yuru Wang
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Qing Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
- Anhui Graphene Engineering Research Center, Anhui University Hefei 230601 China
| |
Collapse
|
10
|
Cao DX, Chen Y, Jin WL, Li W, Wang R, Wang K, Tang AN, Zhu LN, Kong DM. Non-porous covalent organic polymers enable ultrafast removal of cationic dyes via carbonyl/hydroxyl-synergetic electrostatic adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/29/2023]
|
11
|
Zhou W, Tang Y, Zhang X, Zhang S, Xue H, Pang H. MOF derived metal oxide composites and their applications in energy storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
12
|
Cathode materials for lithium-sulfur battery: a review. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
AbstractLithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for becoming the post-lithium-ion battery technology, which would require a high level of energy density across a variety of applications. An increasing amount of research has been conducted on LSBs over the past decade to develop fundamental understanding, modelling, and application-based control. In this study, the advantages and disadvantages of LSB technology are discussed from a fundamental perspective. Then, the focus shifts to intermediate lithium polysulfide adsorption capacity and the challenges involved in improving LSBs by using alternative materials besides carbon for cathode construction. Attempted alternative materials include metal oxides, metal carbides, metal nitrides, MXenes, graphene, quantum dots, and metal organic frameworks. One critical issue is that polar material should be more favorable than non-polar carbonaceous materials in the aspect of intermediate lithium polysulfide species adsorption and suppress shuttle effect. It will be also presented that by preparing cathode with suitable materials and morphological structure, high-performance LSB can be obtained.
Graphical abstract
Collapse
|
13
|
A Manganese(II) 3D Metal–Organic Framework with Siloxane-Spaced Dicarboxylic Ligand: Synthesis, Structure, and Properties. INORGANICS 2023. [DOI: 10.3390/inorganics11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
A new metal–organic framework {[Mn4(Cx)3(etdipy)5]·2ClO4}n (1) was prepared via the complexation of manganese ion from a Mn(ClO4)2 source with 1,3-bis(carboxypropyl)tetramethyldisiloxane (Cx) and 1,2-di(4-pyridyl)ethylene (etdipy) in the presence of 2,4-lutidine as a deprotonating agent. The single-crystal X-ray diffraction analysis revealed a dense 3D framework structure. The presence in the structure of flexible tetramethyldisiloxane moieties, which tend to orient themselves at the interface with the air, gives the compound a highly hydrophobic character, as indicated by the result of the water vapor sorption analysis in the dynamic regime, as well as the shape and stability of the water droplet on the crystalline mass of the compound. The compound is an electrical insulator, and due to its hydrophobicity, this characteristic is unaffected by environmental dampness. The thermal analysis indicated thermal stability up to about 300 °C and an unusual thermal transition for an MOF structure, more precisely a glass transition at 24 °C, the latter also being attributed to the flexible segments in the structure. The magnetic studies showed dominant antiferromagnetic interactions along the metal ion chain in compound 1.
Collapse
|
14
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
15
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
|
16
|
Klug CA, Swift MW, Miller JB, Lyons JL, Albert A, Laskoski M, Hangarter CM. High resolution solid state NMR in paramagnetic metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101811. [PMID: 35792451 DOI: 10.1016/j.ssnmr.2022.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
We study the metal-organic framework (MOF) ZIF-67 with 1H and 13C nuclear magnetic resonance (NMR). In addition to the usual orbital chemical shifts, we observe spinning sideband manifolds in the NMR spectrum due to hyperfine interactions of the paramagnetic cobalt with 1H and 13C. Both orbital and paramagnetic chemical shifts are in good agreement with values calculated from first principles, allowing high-confidence assignment of the observed peaks to specific sites within the MOF. Our measured resonance shifts, line shapes, and spin lattice relaxation rates are also consistent with calculated values. We show that molecules in the pores of the MOF can exhibit high-resolution NMR spectra with fast spin lattice relaxation rates due to dipole-dipole couplings to the Co2+ nodes in the ZIF-67 lattice, showcasing NMR spectroscopy as a powerful tool for identification and characterization of "guests" that may be hosted by the MOF in electrochemical and catalytic applications.
Collapse
Affiliation(s)
- C A Klug
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA.
| | - M W Swift
- Materials Science Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - J B Miller
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - J L Lyons
- Materials Science Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - A Albert
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - M Laskoski
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - C M Hangarter
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
17
|
Zhang H, Liu Y, Zhao J, Peng X, Ren Y, Wei X, Song Y, Cao Z, Wan Q. Structural Modification Engineering of Si Nanoparticles by MIL‐125 for High‐performance Lithium‐ion Storage. ChemistrySelect 2022. [DOI: 10.1002/slct.202200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huanhuan Zhang
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Yu Liu
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Jie Zhao
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Xianhao Peng
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Yufan Ren
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Xijun Wei
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Yingze Song
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Zhiqin Cao
- College of Vanadium and Titanium Panzhihua University Panzhihua Sichuan 617000 PR China
| | - Qi Wan
- State Key Laboratory of Environment-friendly Energy Materials School of Material Science and Engineering Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| |
Collapse
|
18
|
Rapid oxidation of 4-cholorphenol in the iron-based Metal–Organic frameworks (MOFs)/H2O2 system: The ignored two-steps interfacial single-electron transfer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
|
19
|
Zhang Y, Xu J, Zhou J, Wang L. Metal-organic framework-derived multifunctional photocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
|
20
|
Hu T, Tang L, Feng H, Zhang J, Li X, Zuo Y, Lu Z, Tang W. Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
|
21
|
Maru K, Kalla S, Jangir R. Dye contaminated wastewater treatment through metal–organic framework (MOF) based materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj05015j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
A complete discussion of MOFs and MOF composites such as MOF-based membranes, magnetic MOFs, and metal–organic gels (MOGs) used for dye removal along with their adsorption efficiency has been done.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India
| |
Collapse
|
22
|
Gao L, Song XL, Ren JT, Yuan ZY. Nickel phosphonate-derived Ni2P@N-doped carbon co-catalyst with built-in electron-bridge for boosting the photocatalytic hydrogen evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
To construct photocatalytic systems that can efficiently convert solar energy to hydrogen energy, numerous studies have been focused on transition metal phosphides (TMPs) co-catalysts, which display low overpotential and cost...
Collapse
|
23
|
Abstract
MIL-53 and the MIL-53–Al2O3 composite synthesized by a solvothermal procedure, with water as the only solvent besides CrCl3 and benzene-1,4-dicarboxylic acid (BDC), were used as catalytic supports to obtain the novel MIL-53-based catalysts Ni(10 wt.%)/MIL-53 and Ni(10 wt.%)/MIL-53–Al2O3. Ni nanoparticle deposition by an adapted double-solvent method leads to the uniform distribution of metallic particles, both smaller (≤10 nm) and larger ones (10–30 nm). MIL-53–Al2O3 and Ni/MIL-53–Al2O3 show superior thermal stability to MIL-53 and Ni/MIL-53, while MIL-53–Al2O3 samples combine the features of both MIL-53 and alumina in terms of porosity. The investigation of temperature’s effect on the catalytic performance in the methanation process (CO2:H2 = 1:5.2, GHSV = 4650 h−1) revealed that Ni/MIL-53 is more active at temperatures below 300 °C, and Ni/MIL-53–Al2O3 above 300 °C. Both catalysts show maximum CO2 conversion at 350 °C: 75.5% for Ni/MIL-53 (methane selectivity of 93%) and 88.8% for Ni/MIL-53–Al2O3 (methane selectivity of 98%). Stability tests performed at 280 °C prove that Ni/MIL-53–Al2O3 is a possible candidate for the CO2 methanation process due to its high CO2 conversion and CH4 selectivity, corroborated by the preservation of the structure and crystallinity of MIL-53 after prolonged exposure in the reaction medium.
Collapse
|
24
|
Eskandari H, Amirzehni M, Safavi E, Hassanzadeh J. Synthesis of Zn metal–organic framework doped magnetic graphene oxide for preconcentration and extraction of cefixime followed by its measurement using HPLC. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
25
|
Yin Z, Song T, Zhou W, Wang Z, Ma Y. Highly isolated Pt NPs embedded in porous TiO2 derived from MIL-125 with enhanced photocatalytic hydrogen production activity. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
|
26
|
Arauzo A, Bartolomé E, Luzón J, Alonso PJ, Vlad A, Cazacu M, Zaltariov MF, Shova S, Bartolomé J, Turta C. Slow Magnetic Relaxation in {[CoCxAPy)] 2.15 H 2O} n MOF Built from Ladder-Structured 2D Layers with Dimeric SMM Rungs. Molecules 2021; 26:5626. [PMID: 34577095 PMCID: PMC8466197 DOI: 10.3390/molecules26185626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
We present the magnetic properties of the metal-organic framework {[CoCxAPy]·2.15 H2O}n (Cx = bis(carboxypropyl)tetramethyldisiloxane; APy = 4,4`-azopyridine) (1) that builds up from the stacking of 2D coordination polymers. The 2D-coordination polymer in the bc plane is formed by the adjacent bonding of [CoCxAPy] 1D two-leg ladders with Co dimer rungs, running parallel to the c-axis. The crystal packing of 2D layers shows the presence of infinite channels running along the c crystallographic axis, which accommodate the disordered solvate molecules. The Co(II) is six-coordinated in a distorted octahedral geometry, where the equatorial plane is occupied by four carboxylate oxygen atoms. Two nitrogen atoms from APy ligands are coordinated in apical positions. The single-ion magnetic anisotropy has been determined by low temperature EPR and magnetization measurements on an isostructural compound {[Zn0.8Co0.2CxAPy]·1.5 CH3OH}n (2). The results show that the Co(II) ion has orthorhombic anisotropy with the hard-axis direction in the C2V main axis, lying the easy axis in the distorted octahedron equatorial plane, as predicted by the ab initio calculations of the g-tensor. Magnetic and heat capacity properties at very low temperatures are rationalized within a S* = 1/2 magnetic dimer model with anisotropic antiferromagnetic interaction. The magnetic dimer exhibits slow relaxation of the magnetization (SMM) below 6 K in applied field, with a tlf ≈ 2 s direct process at low frequencies, and an Orbach process at higher frequencies with U/kB = 6.7 ± 0.5 K. This compound represents a singular SMM MOF built-up of Co-dimers with an anisotropic exchange interaction.
Collapse
Affiliation(s)
- Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
| | - Elena Bartolomé
- Department of Mechanical Engineering, Escola Universitària Salesiana de Sarrià (EUSS), Passeig de Sant Joan Bosco, 74, 08017 Barcelona, Spain;
| | - Javier Luzón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
- Centro Universitario de la Defensa, Ctra. de Huesca s/n, 50090 Zaragoza, Spain
| | - Pablo J. Alonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
| | - Angelica Vlad
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Maria Cazacu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Mirela F. Zaltariov
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Sergiu Shova
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Juan Bartolomé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
| | - Constantin Turta
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei 3, MD-2028 Chisinau, Moldova
| |
Collapse
|
27
|
|
28
|
|
29
|
Hussain MZ, Yang Z, Huang Z, Jia Q, Zhu Y, Xia Y. Recent Advances in Metal-Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100625. [PMID: 34032017 PMCID: PMC8292888 DOI: 10.1002/advs.202100625] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Indexed: 05/19/2023]
Abstract
Solar energy is a key sustainable energy resource, and materials with optimal properties are essential for efficient solar energy-driven applications in photocatalysis. Metal-organic frameworks (MOFs) are excellent platforms to generate different nanocomposites comprising metals, oxides, chalcogenides, phosphides, or carbides embedded in porous carbon matrix. These MOF derived nanocomposites offer symbiosis of properties like high crystallinities, inherited morphologies, controllable dimensions, and tunable textural properties. Particularly, adjustable energy band positions achieved by in situ tailored self/external doping and controllable surface functionalities make these nanocomposites promising photocatalysts. Despite some progress in this field, fundamental questions remain to be addressed to further understand the relationship between the structures, properties, and photocatalytic performance of nanocomposites. In this review, different synthesis approaches including self-template and external-template methods to produce MOF derived nanocomposites with various dimensions (0D, 1D, 2D, or 3D), morphologies, chemical compositions, energy bandgaps, and surface functionalities are comprehensively summarized and analyzed. The state-of-the-art progress in the applications of MOF derived nanocomposites in photocatalytic water splitting for H2 generation, photodegradation of organic pollutants, and photocatalytic CO2 reduction are systemically reviewed. The relationships between the nanocomposite properties and their photocatalytic performance are highlighted, and the perspectives of MOF derived nanocomposites for photocatalytic applications are also discussed.
Collapse
Affiliation(s)
- Mian Zahid Hussain
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Zhuxian Yang
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Zheng Huang
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional CeramicsZhengzhou UniversityZhengzhou450052China
| | - Yanqiu Zhu
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| | - Yongde Xia
- College of EngineeringMathematics and Physical SciencesUniversity of ExeterExeterEX4 4QFUK
| |
Collapse
|
30
|
One-step synthesis of MOF-derived Cu@N-doped carbon composites as counter electrode catalysts for quantum dot-sensitized solar cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
31
|
Prabhu SM, Chuaicham C, Park CM, Jeon BH, Sasaki K. Synthesis and characterization of defective UiO-66 for efficient co-immobilization of arsenate and fluoride from single/binary solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116841. [PMID: 33735792 DOI: 10.1016/j.envpol.2021.116841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Here, we aimed to synthesize UiO-66 architected fumaric acid mediated lanthanum (La-fum), zirconium (Zr-fum), and cerium (Ce-fum) metal-organic frameworks (MOFs) for co-immobilizations of both arsenate and fluoride from both single and binary systems. The crystalline behavior of Zr-fum MOF was the lowest compared to the other two forms, due to the fact that it required a modulator support as the nucleus growth nature of zirconium moiety is different. The Langmuir maximum adsorption densities of arsenate (fluoride) were 2.689 (4.240), 1.666 (2.255), and 2.174 (4.155) mmol/g for La-fum, Zr-fum, and Ce-fum, respectively and these adsorption densities were found to have record-high values compared with the existing materials in the literature. The arsenate and fluoride adsorption on the MOF materials were confirmed by XPS, PXRD and FTIR studies. The arsenate adsorption mechanism on La-fum and Ce-fum through monodentate complexation confirmed using the distinguished K-edge shell distance in EXAFS studies. The arsenate and fluoride-sorbed materials were recycled using 0.01 M HNO3 and were further utilized for six consecutive cycles for both arsenate and fluoride adsorption indicated the feasibility of the materials. This kind of facile and easy solvothermal synthesized MOFs could pave a way towards the removal of toxins in a practical wastewater as these have superior adsorption properties, stability and reusability.
Collapse
Affiliation(s)
- Subbaiah Muthu Prabhu
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Byoung-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
32
|
Li W, Wang Q, Jin X, Khan NI, Owens G, Chen Z. Removal of low Sb(V) concentrations from mining wastewater using zeolitic imidazolate framework-8. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112280. [PMID: 33706094 DOI: 10.1016/j.jenvman.2021.112280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Wastewater generated during mining remains a significant source of antimony pollution, because techniques to quickly and efficiently remove antimony from wastewater do not exist. In this study, zeolitic imidazolate framework-8 (ZIF-8), a specific type of Metal Organic Frameworks (MOFs), was successfully used to remove trace levels (1 mg L-1) of Sb(V) with a high removal efficiency when the ZIF-8 dose was 0.5 g L-1. Scanning electron microscopy-X-ray energy dispersive spectrometry (SEM-EDS) indicated that Sb(V) was adsorbed onto the ZIF-8surface. The powder X-ray diffraction (XRD) pattern of ZIF-8 before and after adsorption of Sb(V) indicated that ZIF-8 was successfully synthesized, and remained structurally stable after Sb(V) was adsorbed. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) both suggested complexation of zinc on ZIF-8 with Sb(V), where removal of Sb(V) by ZIF-8 followed the Langmuir adsorption isotherm with pseudo second-order kinetics. Thus, a possible removal mechanism was proposed which involved Sb(V) complexing with the zinc hydroxyl groups on ZIF-8 (Zn-OH-Sb). Practically, ZIF-8, could remove 78.6% of Sb(V) from a mining wastewater containing 20 μg L-1 Sb(V). Furthermore, ZIF-8 could be remain active after repeated uses and could still remove and 42.3% of Sb(V) from wastewater containing 1 mg L-1) Sb(V) even when the ZIF-8 was reused five time. This indicated that ZIF-8 had potential for practical removal of Sb(V) from mining wastewaters.
Collapse
Affiliation(s)
- Wenpeng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Qingping Wang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Nasreen Islam Khan
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
33
|
Affiliation(s)
- Junkuo Gao
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Qing Huang
- Department of Chemistry South China Normal University Guangzhou 510006 China
| | - Yuhang Wu
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Ya-Qian Lan
- Department of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA circle San Antonio TX 78249-0689 USA
| |
Collapse
|
34
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
35
|
Lippi R, D’Angelo AM, Li C, Howard SC, Madsen IC, Wilson K, Lee AF, Sumby CJ, Doonan CJ, Patel J, Kennedy DF. Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
36
|
Le T, Chen X, Dong H, Tarpeh W, Perea-Cachero A, Coronas J, Martin SM, Mohammad M, Razmjou A, Esfahani AR, Koutahzadeh N, Cheng P, Kidambi PR, Esfahani MR. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - William Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Adelaida Perea-Cachero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Stephen M. Martin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Munirah Mohammad
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirsalar R. Esfahani
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Negin Koutahzadeh
- Environmental Health & Safety, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Piran R. Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
37
|
Dong B, Wang WJ, Xi SC, Wang DY, Wang R. A Carboxyl-Functionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye Adsorption. Chemistry 2021; 27:2692-2698. [PMID: 33009681 DOI: 10.1002/chem.202003381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Instead of using organic solvents, a deep eutectic solvent (DES) composed of tetrabutylammonium bromide and imidazole (Bu4 NBr/Im) was employed as a solvent for the first time to synthesize covalent organic frameworks (COFs). Due to the low vapor pressure of the Bu4 NBr/Im-based DES, a new carboxyl-functionalized COF (TpPa-COOH) was synthesized under environmental pressure. The as-synthesized TpPa-COOH has open channels, and the DES can be removed completely from the pores. The dye adsorption performance of TpPa-COOH was examined for three organic dyes with similar molecular sizes: one anionic dye (eosin B, EB) and two cationic dyes (methylene blue, MB and safranine T, ST). TpPa-COOH showed an excellent selective adsorption effect on MB and ST. The electronegative keto form in TpPa-COOH might help to form electrostatic and π-π interactions between the π-stacking frameworks of TpPa-COOH and the positive plane MB and ST molecules. The adsorption isotherms of MB and ST on TpPa-COOH were further investigated in detail, and the equilibrium adsorption was well modeled by using a Langmuir isotherm model. Together with hydrogen bonding, TpPa-COOH showed higher adsorption capacity for ST than for MB (1135 vs. 410 mg g-1 ). These results could provide a guidance for the green synthesis of adsorbents in removing organic dyes from wastewater.
Collapse
Affiliation(s)
- Bin Dong
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P.R. China
| | - Wen-Jing Wang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P.R. China
| | - Sun-Chang Xi
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P.R. China
| | - Dong-Yue Wang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P.R. China
| | - Ren Wang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P.R. China
| |
Collapse
|
38
|
Dang Q, Li Y, Zhang W, Kaneti YV, Hu M, Yamauchi Y. Spatial-controlled etching of coordination polymers. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
39
|
He Y, Li C, Chen X, Rao H, Shi Z, Feng S. Critical Aspects of Metal-Organic Framework-Based Materials for Solar-Driven CO 2 Reduction into Valuable Fuels. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000082. [PMID: 33552555 PMCID: PMC7857132 DOI: 10.1002/gch2.202000082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Photoreduction of CO2 into value-added fuels is one of the most promising strategies for tackling the energy crisis and mitigating the "greenhouse effect." Recently, metal-organic frameworks (MOFs) have been widely investigated in the field of CO2 photoreduction owing to their high CO2 uptake and adjustable functional groups. The fundamental factors and state-of-the-art advancements in MOFs for photocatalytic CO2 reduction are summarized from the critical perspectives of light absorption, carrier dynamics, adsorption/activation, and reaction on the surface of photocatalysts, which are the three main critical aspects for CO2 photoreduction and determine the overall photocatalytic efficiency. In view of the merits of porous materials, recent progress of three other types of porous materials are also briefly summarized, namely zeolite-based, covalent-organic frameworks based (COFs-based), and porous semiconductor or organic polymer based photocatalysts. The remarkable performance of these porous materials for solar-driven CO2 reduction systems is highlighted. Finally, challenges and opportunities of porous materials for photocatalytic CO2 reduction are presented, aiming to provide a new viewpoint for improving the overall photocatalytic CO2 reduction efficiency with porous materials.
Collapse
Affiliation(s)
- Yiqiang He
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| | - Xiao‐Bo Chen
- School of EngineeringRMIT UniversityCarltonVIC3053Australia
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
- International Center of Future ScienceJilin UniversityChangchun130012P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
40
|
|
41
|
Vidu R, Matei E, Predescu AM, Alhalaili B, Pantilimon C, Tarcea C, Predescu C. Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. TOXICS 2020; 8:E101. [PMID: 33182698 PMCID: PMC7711730 DOI: 10.3390/toxics8040101] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/07/2022]
Abstract
Removing heavy metals from wastewaters is a challenging process that requires constant attention and monitoring, as heavy metals are major wastewater pollutants that are not biodegradable and thus accumulate in the ecosystem. In addition, the persistent nature, toxicity and accumulation of heavy metal ions in the human body have become the driving force for searching new and more efficient water treatment technologies to reduce the concentration of heavy metal in waters. Because the conventional techniques will not be able to keep up with the growing demand for lower heavy metals levels in drinking water and wastewaters, it is becoming increasingly challenging to implement technologically advanced alternative water treatments. Nanotechnology offers a number of advantages compared to other methods. Nanomaterials are more efficient in terms of cost and volume, and many process mechanisms are better and faster at nanoscale. Although nanomaterials have already proved themselves in water technology, there are specific challenges related to their stability, toxicity and recovery, which led to innovations to counteract them. Taking into account the multidisciplinary research of water treatment for the removal of heavy metals, the present review provides an updated report on the main technologies and materials used for the removal of heavy metals with an emphasis on nanoscale materials and processes involved in the heavy metals removal and detection.
Collapse
Affiliation(s)
- Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
- Department of Electrical & Computer Engineering, University of California, Davis, CA 95616, USA
| | - Ecaterina Matei
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, Kuwait City 13109, Kuwait;
| | - Cristian Pantilimon
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Claudia Tarcea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| |
Collapse
|
42
|
Kabtamu DM, Wu YN, Li F. Hierarchically porous metal-organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122765. [PMID: 32438242 DOI: 10.1016/j.jhazmat.2020.122765] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) with high porosity have received much attention as promising materials for many applications owing to their unique properties. However, to date, most of the reported MOFs have microporous structures, which slow down diffusion/mass transfer and limit the accessibility of bulky molecules to its internal surface. Thus, it is crucial to develop an efficient way to create larger pores (mesoporous and/or macroporous) into microporous MOFs to form hierarchical porous metal-organic frameworks (HP-MOFs), which facilitate the diffusion and mass transfer of guest molecules. HP-MOFs are excellent and promising candidates for environmental applications under the background of environmental contaminations. In this review paper, we are primarily focusing on the latest progress in the preparation of HP-MOFs by employing template-assisted and template-free synthetic approaches for environmental cleaning applications. Particularly, the adsorptive purification of the most common toxic substances, including gases, dyes, heavy metal ions, and antibiotics from the environment using HP-MOFs as adsorbents is briefly discussed. The overall results clearly showed that the superiority of HP-MOFs compared with conventional microporous MOFs. Finally, we summarize the remaining challenges and provide personal perspectives on possible future development of HP-MOFs.
Collapse
Affiliation(s)
- Daniel Manaye Kabtamu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Department of Chemistry, Debre Berhan University, Po. Box: 445, Debre Berhan, Ethiopia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
43
|
Qin B, Wu S, Gahungu G, Li H, Zhao Y, Zhang X, Zhang J. A Trinuclear Cobalt-Organic Framework: Solvatochromic Sensor towards CH 2 Cl 2 , and its Derivative as an Anode of Lithium-Ion Batteries with High Performance. Chemistry 2020; 26:14187-14193. [PMID: 32779769 DOI: 10.1002/chem.202002904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Indexed: 11/10/2022]
Abstract
Here, a porous cobalt-organic framework with pillared layer structures, namely [Co3 OBA3 PTD(H2 O)2 ⋅ 2 DMA⋅H2 O]n (1, H2 OBA=4,4'-oxybis(benzoic acid); PTD=6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine), was fabricated by using cobalt trinuclear nodes, low-cost carboxylic linker, and accessible nitrogen heterocyclic ligands. This compound exhibited a highly efficient solvatochromism towards CH2 Cl2 within one minute and can be used 200 times at least. The corresponding dropper detector was assembled as a practical sensor. Meanwhile, the porous Co3 O4 was obtained by a simple but effective annealing treatment. Electrochemical measurements confirm that this Co3 O4 material derived from compound 1 shows high and stable lithium storage capabilities (1081.75 mA h g-1 at 200 mA g-1 after 115 cycles) and excellent rate properties.
Collapse
Affiliation(s)
- Bowen Qin
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shuangyu Wu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Godefroid Gahungu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - He Li
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yaling Zhao
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoying Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jingping Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
44
|
Synthesis and structure of manganese(ii) coordination polymers with 1,4-diazabicyclo[2.2.2]octane N, N′-dioxide: solvent and template effects. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2930-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|
45
|
El-Mehalmey WA, Safwat Y, Bassyouni M, Alkordi MH. Strong Interplay between Polymer Surface Charge and MOF Cage Chemistry in Mixed-Matrix Membrane for Water Treatment Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27625-27631. [PMID: 32496035 DOI: 10.1021/acsami.0c06399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Despite the large number of reports on the utilization of highly microporous solids, most relevant are metal-organic frameworks (MOFs), in different demanding applications, the successful hybridization of MOFs and moldable polymer matrices into flexible, water-permeable membranes exhibiting strong entanglement of the MOF and the polymer matrix properties is still lacking. We describe herein an efficient pathway to construct a mixed-matrix membrane (MMM) comprising a water-stable metal-organic framework (UiO-66-NH2), as the active sorbent, and cellulose acetate (CA), as the polymer matrix, to construct a flexible membrane for water treatment applications. The MOF@CA MMM demonstrated superior performance in terms of exceptional removal of organic dyes (both cationic and anionic species) as well as hexavalent Cr ions, compared to the control CA membrane. The recorded high uptake of the MOF@CA MMM for this wide array of contaminants demonstrated the accessibility of the MOF nanocages immobilized within the MMM, in contrast to the common perception that the polymer matrix might act as a physical barrier to block the accessibility of the MOF cages. The negative surface charge of the matrix exerted a notable action to affect the diffusion of the negatively charged contaminants to reach the active sorbent filler. Moreover, the formed membrane demonstrated high durability and recyclability with no detected loss of performance over numerous cycles. This approach outlines the ability to formulate one of the most water-stable MOFs, as exceptional microporous sorbent, into a usable membrane form compatible with real-life applications.
Collapse
Affiliation(s)
- Worood A El-Mehalmey
- Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Youssef Safwat
- Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Mohamed Bassyouni
- Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| |
Collapse
|
46
|
Shova S, Vlad A, Damoc M, Tiron V, Dascalu M, Novitchi G, Ursu C, Cazacu M. Nanoscale Coordination Polymer of Dimanganese(II) as Infinite, Flexible Nanosheets with Photo‐Switchable Morphology. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sergiu Shova
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Angelica Vlad
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Madalin Damoc
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Vasile Tiron
- Faculty of Physics Alexandru Ioan Cuza University of Iasi Blvd. Carol I no. 11 700506 Iași Romania
| | - Mihaela Dascalu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Ghenadie Novitchi
- CNRS UPR 3228 Laboratoire National des Champs Magnétiques Intenses 25 Rue des Martyrs 38042 Grenoble France
| | - Cristian Ursu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Maria Cazacu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| |
Collapse
|
47
|
Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213221] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
48
|
Li Z, Zhao J, Nie J, Yao S, Wang J, Feng X. Co3O4/NiO/C composites derived from zeolitic imidazolate frameworks (ZIFs) as high-performance anode materials for Li-ion batteries. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04595-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
49
|
Luo Y, Wu M, Pang B, Ge J, Li R, Zhang P, Zhou M, Han L, Okada S. Metal‐organic Framework of [Cu
2
(BIPA‐TC)(DMA)
2
]n: A Promising Anode Material for Lithium‐Ion Battery. ChemistrySelect 2020. [DOI: 10.1002/slct.202000503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yulin Luo
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Mengke Wu
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Baocheng Pang
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Jiawen Ge
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Rui Li
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Pan Zhang
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Mingjiong Zhou
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Lei Han
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 Zhejiang P. R. China
| | - Shigeto Okada
- Institute for Materials Chemistry and EngineeringKyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| |
Collapse
|
50
|
Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. J Colloid Interface Sci 2020; 562:400-408. [DOI: 10.1016/j.jcis.2019.11.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
|