1
|
Wang JC, Pan R, Yang WT, Chen Z, Du JQ, Kan JL, Dong YB. Pyridine oxide-decorated covalent organic framework for catalytic allylation of aromatic aldehydes with allyl(trichloro)silane. Chem Commun (Camb) 2025; 61:1168-1171. [PMID: 39692521 DOI: 10.1039/d4cc04977b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A covalent organic framework Py-O-COF, which was directly synthesized from a monomer containing pyridine oxide with its partner via imine condensation, could significantly promote the allylation of aromatic aldehydes with allyl(trichloro)silane in a heterogeneous manner.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ru Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wen-Ting Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
2
|
Verma K, Mohit, Thomas KRJ. Carbazole and Triazine-Based D-A Covalent Organic Framework for Visible Light-Mediated Photocatalytic C-H Activation of Imidazopyridine and Indole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24148-24161. [PMID: 39471395 DOI: 10.1021/acs.langmuir.4c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Two-dimensional donor-acceptor covalent organic frameworks (COFs) show considerable promise for metal-free and heterogeneous photocatalysis due to their efficient charge carrier separation and exciton transport upon photoexcitation. To date, numerous photocatalysts have been developed. However, they encounter several challenges, such as inadequate sunlight harvesting ability, poor photostability, and nonreusability. Fortunately, the emergence of COFs presents a promising solution to these problems. Herein, we report an imine-linked CzTA-TAPT COF featuring carbazole as the electron donor and triazine as the electron acceptor. Compared to the previously reported C2-linker-derived CzDA-TAPT COF, this C3-linked COF exhibits good charge separation and charge carrier transport. As a consequence, it demonstrates excellent photocatalytic applicability in the C-3 thiocyanation of imidazo[1,2-a]pyridine and indole under ambient conditions under visible light. Moreover, its broad substrate compatibility and high recyclability provide a green and sustainable approach for the thiocyanation of imidazopyridine and indole. To the best of our knowledge, this is the first heterogeneous catalyst demonstrated for the thiocyanation of imidazo[1,2-a]pyridine. These findings will inspire further research in the development of high-performance D-A COFs as photocatalysts for organic transformations.
Collapse
Affiliation(s)
- Kamal Verma
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Fu C, Jiang S, Zhuo S, Qiu J, Luo H, Wu Y, Li Y, Jung YM. Covalent organic framework-hybridized Ag nanoparticles as SERS substrate for highly sensitive detection of DNA bases. Anal Bioanal Chem 2024; 416:5295-5302. [PMID: 39098925 DOI: 10.1007/s00216-024-05460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Currently, research in the development of high-performance sensing platforms has increased to fulfill the needs of analysis and detection. In this study, we developed a novel type of surface-enhanced Raman scattering (SERS) chip composed of a covalent organic framework (COF)-silver nanoparticles (AgNPs) nanocomposite, and this nanocomposite was fabricated by a one-step method of ultrasonically mixing the obtained COF and AgNPs. The fabricated chip exhibited high sensitivity and repeatable SERS effects. Practical application results showed that the chip was highly sensitive and reliable and capable of detecting DNA bases (adenine) to fit an equation in the range from 0.01 pM to 1 nM, with an R-square of 0.97253 and a detection limit of ~0.026 pM (signal-to-noise ratio (S/N) = 3). Therefore, the proposed SERS system has potential applications in biological assays.
Collapse
Affiliation(s)
- Cuicui Fu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Sihan Jiang
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Siyu Zhuo
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Jiaxin Qiu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Hualu Luo
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Yan Wu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Yangyang Li
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
4
|
Li Z, Tsuneyuki T, Paitandi RP, Nakazato T, Odawara M, Tsutsui Y, Tanaka T, Miyake Y, Shinokubo H, Takagi M, Shimazaki T, Tachikawa M, Suzuki K, Kaji H, Ghosh S, Seki S. Ultrafine Spatial Modulation of Diazapyrene-Based Two-Dimensional Conjugated Covalent Organic Frameworks. J Am Chem Soc 2024; 146:23497-23507. [PMID: 39115422 DOI: 10.1021/jacs.4c07091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Tailormade bottom-up synthesis of covalent organic frameworks (COFs) from various functional building blocks offer not only tunable topology and pore size but also multidimensional properties. High crystallinity is one of the prerequisites for their structures and associated physicochemical properties. Among different π-conjugated motifs for constructing COFs, pyrene-based tetragonal structures are effective in achieving highly ordered and crystalline states. In the present research, we demonstrated that the substitution of pyrene with 2,7-diazapyrene produces nearly "flat" structures of two-dimensional (2D) COF layers by controlling the torsional angle of linker molecules. Featuring finite pore diameters and excellent thermodynamic stability of ∼500 °C, ordered face-to-face (slipped AA) stacking arrangements were produced. Extended electrical conjugation spanning 2D frames with modest optical bandgaps (Eg) of ∼2.1 eV shows the planar character of diazapyrene-based COFs. The stacking of the conjugated 2D frames with small Eg values is also beneficial for the formation of highly stable conducting pathways in the crystalline state, which was confirmed by the results of the microwave conductivity measurements. Nitrogen centers in diazapyrene units also play a key role as the active sites for proton transfer, and the maximum proton conductivity of σ = 10-2 S cm-1 was achieved along the cocontinuous nanopore structures surrounded by the active sites. Results show that tetragonal COFs based on diazapyrene can be used as a highly crystalline two-dimensional material with special electrical and proton-conducting capabilities.
Collapse
Affiliation(s)
- Zhuowei Li
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Tsuneyuki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Rajendra Prasad Paitandi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takumi Nakazato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Masahiro Odawara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Makito Takagi
- Graduate School of Nanobio Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Tomomi Shimazaki
- Graduate School of Nanobio Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Masanori Tachikawa
- Graduate School of Nanobio Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Samrat Ghosh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Zhao Y, Gu H, Zhou Y, Wen C, Liu X, Wang S, Chen Z, Yang H, Wang X. COF-based membranes for liquid phase separation: Preparation, mechanism and perspective. J Environ Sci (China) 2024; 141:63-89. [PMID: 38408835 DOI: 10.1016/j.jes.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Covalent organic frameworks (COFs) are a new kind of crystalline porous materials composed of organic molecules connected by covalent bonds, processes the characteristics of low density, large specific surface area, adjustable pore size and structure, and easy to functionalize, which have been widely used in the field of membrane separation technology. Recently, there are more and more researches focusing on the preparation methods, separation application, and mechanism of COF membranes, which need to be further summarized and compared. In this review, we primarily summarized several conventional preparation methods, such as two-phase interfacial polymerization, in-situ growth on substrate, unidirectional diffusion method, layer-by-layer assembly method, mixed matrix membranes, and so on. The advantages and disadvantages of each method are briefly summarized. The application potential of COF membrane in liquid separation are introduced from four aspects: dyeing wastewater treatment, heavy metal removal, seawater desalination and oil-water separation. Then, the mechanisms including pore structure, hydrophilic/hydrophobic, electrostatic repulsion/attraction and Donnan effect are introduced. For the efficient removal of different kind of pollutions, researchers can select different ligands to construct membranes with specific pore size, hydrophily, salt or organic rejection ability and functional group. The ideas for the design and preparation of COF membranes are introduced. Finally, the future direction and challenges of the next generation of COF membranes in the field of separation are prospected.
Collapse
Affiliation(s)
- Yujie Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - He Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yilun Zhou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Caimei Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
6
|
Sarkar M, Chakrabortty P, Sengupta M, Kothari AC, Islam MS, Islam SM. Light-Mediated Sustainable Conversion of Carbon Dioxide to Valuable Methanol by Highly Efficient Covalent Organic Framework g-C 3N 4 Composites as a Reusable Photocatalyst. Ind Eng Chem Res 2024; 63:5573-5590. [DOI: 10.1021/acs.iecr.3c03572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Mainak Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Manideepa Sengupta
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Anil Chandra Kothari
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| |
Collapse
|
7
|
Wang JC, Yu ZG, Yang WT, Du JQ, Chen Z, Kan JL, Dong Y, Dong YB. Phenanthroline-Decorated Covalent Organic Framework for Catalytic Synthesis of 2-Aminobenzothiazoles in Water. Chempluschem 2024; 89:e202300494. [PMID: 37929843 DOI: 10.1002/cplu.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
2-Aminobenzothiazoles are widely used in the fields of pharmaceuticals and pesticides. Herein, we report a metal-free protocol for the preparation of 2-aminobenzothiazoles by a covalent organic framework (COF) catalyzed tandem reaction. In the presence of catalytic amount of phenanthroline-decorated COF (Phen-COF), a variety of 2-aminobenzothiazoles are obtained in excellent yields by the cross-coupling of 2-iodoanilines with isothiocyanates at room temperature in water. In addition, the COF-catalyst is very stable and can be reused at least seven times without loss of its catalytic activity.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Zhi-Gao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Wen-Ting Yang
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| |
Collapse
|
8
|
Gao C, Guan X, Chen L, Hu H, Shi L, Zhang C, Sun C, Du Y, Hu B. Construction of a conjugated covalent organic framework for iodine capture. RSC Adv 2024; 14:1665-1669. [PMID: 38187451 PMCID: PMC10767867 DOI: 10.1039/d3ra07781k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Radioactive iodine in the nuclear field is considered very dangerous nuclear waste because of its chemical toxicity, high mobility and long radioactive half-life. Herein, a conjugated two-dimensional covalent organic framework, TPB-TMPD-COF, has been designed and synthesized for iodine capture. TPB-TMPD-COF has been well characterized by several techniques and showed long order structure and a large surface area (1090 m2 g-1). Moreover, TPB-TMPD-COF shows a high iodine capture value at 4.75 g g-1 under 350 K and normal pressure conditions, benefitting from the increased density of adsorption sites. By using multiple techniques, the iodine vapor adsorbed into the pores may readily generate the electron transfer species (I3- and I5-) due to the strong interactions between imine groups and iodine molecules, which contributes to the high iodine uptake for TPB-TMPD-COF. Our study will stimulate the design and synthesis of COFs as a solid-phase adsorbent for iodine uptake.
Collapse
Affiliation(s)
- Chao Gao
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xuhui Guan
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Lei Chen
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Haoran Hu
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Lei Shi
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Chong Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Yang Du
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Bingcheng Hu
- School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
9
|
Shahzad U, Marwani HM, Saeed M, Asiri AM, Repon MR, Althomali RH, Rahman MM. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. CHEM REC 2024; 24:e202300285. [PMID: 37986206 DOI: 10.1002/tcr.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424, Kaunas, Lithuania
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Ajnsztajn A, Harikrishnan VVJ, Alahakoon SB, Zhu D, Barnes M, Daum J, Gayle J, Tomur G, Lowenstein J, Roy S, Ajayan PM, Verduzco R. Synthesis and Additive Manufacturing of Hydrazone-Linked Covalent Organic Framework Aerogels. Chemistry 2023; 29:e202302304. [PMID: 37665636 DOI: 10.1002/chem.202302304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Covalent Organic Frameworks (COFs) are crystalline, porous organic materials. Recent studies have demonstrated novel processing strategies for COFs to form adaptable architectures, but these have focused primarily on imine-linked COFs. This work presents a new synthesis and processing route to produce crystalline hydrazone-linked COF gels and aerogels with hierarchical porosity. The method was implemented to produce a series of hydrazone-linked COFs with different alkyl side-chain substituents, achieving control of the hydrophilicity of the final aerogel. Variation in the length of the alkyl substituents yielded materials with controllable form factors that can preferentially adsorb water or nonpolar organic solvents. Additionally, a method for additive manufacturing of hydrazone-linked COFs using hydroxymethylcellulose as a sacrificial additive is presented. This work demonstrates an effective and simple approach to the fabrication of hydrazone COF aerogels and additive manufacturing to produce hydrazone COFs of desired shape.
Collapse
Affiliation(s)
- Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | | | - Sampath B Alahakoon
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Kandawala Rd, Ratmalana, 10390, Sri Lanka
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| | - Morgan Barnes
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jeremy Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jessica Gayle
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Gulnihal Tomur
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| |
Collapse
|
11
|
Daum JP, Ajnsztajn A, Iyengar SA, Lowenstein J, Roy S, Gao GH, Tsai EHR, Ajayan PM, Verduzco R. Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition. ACS NANO 2023; 17:21411-21419. [PMID: 37871166 DOI: 10.1021/acsnano.3c06142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covalent organic frameworks (COFs) are a promising class of crystalline polymer networks that are useful due to their high porosity, versatile functionality, and tunable architecture. Conventional solution-based methods of producing COFs are marred by slow reactions that produce powders that are difficult to process into adaptable form factors for functional applications, and there is a need for facile and fast synthesis techniques for making crystalline and ordered covalent organic framework (COF) thin films. In this work, we report a chemical vapor deposition (CVD) approach utilizing co-evaporation of two monomers onto a heated substrate to produce highly crystalline, defect-free COF films and coatings with hydrazone, imine, and ketoenamine COF linkages. This all-in-one synthesis technique produces highly crystalline, 40 nm-1 μm-thick COF films on Si/SiO2 substrates in less than 30 min. Crystallinity and alignment were proven by using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and transmission electron microscopy (TEM), and successful conversion of the monomers to produce the target COF was supported by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis measurements. Additionally, we used atomic force microscopy (AFM) to investigate the growth mechanisms of these films, showing the coalescence of triangular crystallites into a smooth film. To show the wide applicability and scope of the CVD process, we also prepared crystalline ordered COF films with imine and ketoenamine linkages. These films show potential as high-quality size exclusion membranes, catalytic platforms, and organic transistors.
Collapse
Affiliation(s)
- Jeremy P Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Guan-Hui Gao
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Knežević S, Jovanović NT, Vlahović F, Ajdačić V, Costache V, Vidić J, Opsenica I, Stanković D. Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the theoretical study of sensing principle. CHEMOSPHERE 2023; 341:139930. [PMID: 37659506 DOI: 10.1016/j.chemosphere.2023.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Covalent organic frameworks (COFs) are emerging as promising sensing materials due to their controllable structure and function properties, as well as excellent physicochemical characteristics. Here, specific interactions between a triazine-based COF and a mass-used herbicide - glyphosate (GLY) have been utilized to design a disposable sensing platform for GLY detection. This herbicide has been extensively used for decades, however, its harmful environmental impact and toxicity to humans have been recently proven, conditioning the necessity for the strict control and monitoring of its use and its presence in soil, water, and food. Glyphosate is an organophosphorus compound, and its detection in complex matrices usually requires laborious pretreatment. Here, we developed a direct, miniaturized, robust, and green approach for disposable electrochemical sensing of glyphosate, utilizing COF's ability to selectively capture and concentrate negatively charged glyphosate molecules inside its nanopores. This process generates the concentration gradient of GLY, accelerating its diffusion towards the electrode surface. Simultaneously, specific COF-glyphosate binding catalyses the oxidative cleavage of the C-P bond and, together with pore nanoconfinement, enables sensitive glyphosate detection. Detailed sensing principles and selectiveness were scrutinized using DFT-based modelling. The proposed electrochemical method has a linear working range from 0.1 μM to 10 μM, a low limit of detection of 96 nM, and a limit of quantification of 320 nM. The elaborated sensing approach is viable for use in real sample matrices and tested for GLY determination in soil and water samples, without pretreatment, preparation, or purification. The results showed the practical usefulness of the sensor in the real sample analysis and suggested its suitability for possible out-of-laboratory sensing.
Collapse
Affiliation(s)
- Sara Knežević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Nataša Terzić Jovanović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Filip Vlahović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdačić
- Innovative Centre Ltd., Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350, Jouy en Josas, France
| | - Jasmina Vidić
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor Stanković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Department of Radioisotopes, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Bian Y, Zhang Y, Liu T, Zhang F, Gao HY. Room-temperature synthesis of imine-linked magnetic covalent organic polymers in deep eutectic solvents for the extraction of flavonoids and their determination with HPLC-MS/MS. Mikrochim Acta 2023; 190:424. [PMID: 37776373 DOI: 10.1007/s00604-023-05976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/02/2023]
Abstract
A novel imine-linked magnetic covalent organic polymer, Fe3O4@TAB-TFPT, was synthesized using environmentally friendly deep eutectic solvents as the reaction medium instead of conventional organic solvents. The materials were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), FT-IR, N2 adsorption-desorption isotherms, energy dispersive spectrometer (EDS), X-ray photoelectron spectra (XPS), and thermo gravimetric analysis (TGA). Subsequently, the materials were employed as an adsorbent for magnetic solid-phase extraction (MSPE) of flavonoids, including Kurarinone, Norkurarinone, Xanthohumol, and Isoxanthohumol, prior to their determination by HPLC-MS/MS. The validation results demonstrate good linearity within the concentration range 0.1-1000 ng∙mL-1 (R2 ≥ 0.9963), high enrichment factors ranging from 18.9 to 30.7, and low LODs (0.01-0.05 ng∙mL-1) and LOQs (0.05-0.1 ng∙mL-1). Furthermore, recoveries between 80.60% and 108.40% with relative standard deviations ≤ 8.49% were achieved. The proposed MSPE-HPLC-MS/MS method was successfully applied to the determination of flavonoids in Sophora flavescens Aition sample.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
14
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
15
|
Nandy L, Fenton JL, Freedman MA. Heterogeneous Ice Nucleation in Model Crystalline Porous Organic Polymers: Influence of Pore Size on Immersion Freezing. J Phys Chem A 2023. [PMID: 37470779 DOI: 10.1021/acs.jpca.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Heterogeneous ice nucleation activity is affected by aerosol particle composition, crystallinity, pore size, and surface area. However, these surface properties are not well understood, regarding how they act to promote ice nucleation and growth to form ice clouds. Therefore, synthesized materials for which surface properties can be tuned were examined in immersion freezing mode in this study. To establish the relationship between particle surface properties and efficiency of ice nucleation, materials, here, covalent organic frameworks (COFs), with different pore diameters and degrees of crystallinity (ordering), were characterized. Results showed that out of all the highly crystalline COFs, the sample with a pore diameter between 2 and 3 nm exhibited the most efficient ice nucleation activity. We posit that the highly crystalline structures with ordered pores have an optimal pore diameter where the ice nucleation activity is maximized and that the not highly crystalline structures with nonordered pores have more sites for ice nucleation. The results were compared and discussed in the context of other synthesized porous particle systems. Such studies give insight into how material features impact ice nucleation activity.
Collapse
Affiliation(s)
- Lucy Nandy
- Department of Chemistry, The Pennsylvania State University, Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Julie L Fenton
- Department of Chemistry, The Pennsylvania State University, Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University, Chemistry Building, University Park, Pennsylvania 16802, United States
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Huang Z, Du X, Ma M, Wang S, Xie Y, Meng Y, You W, Xiong L. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202358. [PMID: 36732888 DOI: 10.1002/cssc.202202358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials. However, how to improve the electrochemical performance of OEMs in RAIBs on a laboratory scale is still challenging. This work reviews and discusses the uses of conductive polymers, carbonyl compounds, imine polymers, polycyclic aromatic hydrocarbons, organic frameworks, and other organic materials as the cathodes of RAIBs, as well as energy-storage mechanisms and research progress. It is hoped that this Review can provide the design guidelines for organic cathode materials with high capacity and great stability used in aluminum-organic batteries and develop more efficient organic energy storage cathodes.
Collapse
Affiliation(s)
- Zhen Huang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xianfeng Du
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingbo Ma
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shixin Wang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuehong Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yi Meng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzhi You
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lilong Xiong
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
18
|
Zhang X, Zhu D, Wang S, Zhang J, Zhou S, Wang W. Efficient adsorption and degradation of dyes from water using magnetic covalent organic frameworks with a pyridinic structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34669-34683. [PMID: 36515876 DOI: 10.1007/s11356-022-24688-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3 h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shiyi Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Jinwen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China.
| |
Collapse
|
19
|
Shah R, Ali S, Raziq F, Ali S, Ismail PM, Shah S, Iqbal R, Wu X, He W, Zu X, Zada A, Adnan, Mabood F, Vinu A, Jhung SH, Yi J, Qiao L. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
21
|
Gao L, Li W, Tang H, Qin J, Lu S, Zhang M, Yang K, Jiao Y. A fully π-conjugated triazine-based 2D covalent organic framework used as metal-free yellow phosphors in white light-emitting diodes. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Metal ion-catalyzed Interfacial Polymerization of Functionalized Covalent Organic Framework films for efficient Separation. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
23
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
24
|
Machado TF, Santos FA, Pereira RFP, de Zea Bermudez V, Valente AJM, Serra MES, Murtinho D. β-Ketoenamine Covalent Organic Frameworks—Effects of Functionalization on Pollutant Adsorption. Polymers (Basel) 2022; 14:polym14153096. [PMID: 35956612 PMCID: PMC9370968 DOI: 10.3390/polym14153096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Water pollution due to global economic activity is one of the greatest environmental concerns, and many efforts are currently being made toward developing materials capable of selectively and efficiently removing pollutants and contaminants. A series of β-ketoenamine covalent organic frameworks (COFs) have been synthesized, by reacting 1,3,5-triformylphloroglucinol (TFP) with different C2-functionalized and nonfunctionalized diamines, in order to evaluate the influence of wall functionalization and pore size on the adsorption capacity toward dye and heavy metal pollutants. The obtained COFs were characterized by different techniques. The adsorption of methylene blue (MB), which was used as a model for the adsorption of pharmaceuticals and dyes, was initially evaluated. Adsorption studies showed that –NO2 and –SO3H functional groups were favorable for MB adsorption, with TpBd(SO3H)2-COF [100%], prepared between TFP and 4,4′-diamine- [1,1′-biphenyl]-2,2′-disulfonic acid, achieving the highest adsorption capacity (166 ± 13 mg g−1). The adsorption of anionic pollutants was less effective and decreased, in general, with the increase in –SO3H and –NO2 group content. The effect of ionic interactions on the COF performance was further assessed by carrying out adsorption experiments involving metal ions. Isotherms showed that nonfunctionalized and functionalized COFs were better described by the Langmuir and Freundlich sorption models, respectively, confirming the influence of functionalization on surface heterogeneity. Sorption kinetics experiments were better adjusted according to a second-order rate equation, confirming the existence of surface chemical interactions in the adsorption process. These results confirm the influence of selective COF functionalization on adsorption processes and the role of functional groups on the adsorption selectivity, thus clearly demonstrating the potential of this new class of materials in the efficient and selective capture and removal of pollutants in aqueous solutions.
Collapse
Affiliation(s)
- Tiago F. Machado
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Filipa A. Santos
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Rui F. P. Pereira
- Chemistry Department and Chemistry Center, University of Minho, 4710-057 Braga, Portugal;
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
- Correspondence: ; Tel.: +351-966047336
| | - M. Elisa Silva Serra
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.F.M.); (F.A.S.); (M.E.S.S.); (D.M.)
| |
Collapse
|
25
|
Xu M, Zhang J, Liu L, Cheng X, Hu J, Sha Y, Su Z, Wang Y. Co(NO 3) 2/covalent organic framework nanoparticles for high-efficiency photocatalytic oxidation of thioanisole. Chem Commun (Camb) 2022; 58:6324-6327. [PMID: 35527508 DOI: 10.1039/d2cc01616h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrated a highly efficient photocatalytic sulfide oxidation reaction at ambient conditions without a sacrificial reagent or redox mediator, by using Co(NO3)2/covalent organic framework nanoparticles as a photocatalyst.
Collapse
Affiliation(s)
- Mingzhao Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| | - Lifei Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Yang L, Huang N. Covalent organic frameworks for applications in lithium batteries. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liting Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
27
|
|
28
|
Zhao Y, Ma Y, Li Y. Chemiluminescence resonance energy transfer determination of uric acid with fluorescent covalent organic framework as energy acceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120643. [PMID: 34840049 DOI: 10.1016/j.saa.2021.120643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A simple and feasible strategy was developed for the preparation of fluorescent covalent organic frameworks (COFs) TpPa-1@FL. The TpPa-1-1@FL was prepared via a self-assembly strategy by soaking non-fluorescent COFs TpPa-1 into strong fluorescent fluorescein (FL) solution. A chemiluminescence resonance energy transfer (CRET) system was constructed by the combination strong fluorescent TpPa-1@FL with TCPO-hydrogen peroxide (H2O2) reaction. The chemiluminescence (CL) signal of the system was further improved by the addition of bovine serum albumin (BSA). The CRET system can determine H2O2 with a linear range response from 5.0 µmol/L to 20.0 mmol/L and a detection limit of 1.1 µmol/L. The CRET system was further exploited for indirect detection of uric acid with coupling of uricase. A good linear relationship was obtained for uric acid in the 10.0-400.0 µmol/L concentration range with a detection limit of 3.8 µmol/L. The practicability of this method was assessed by the determination of uric acid in real samples of human serum and urine.
Collapse
Affiliation(s)
- Yaxin Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuyu Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yinhuan Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
29
|
Chakrabortty P, Ghosh S, Das A, Khan A, Islam SM. Visible-light-driven sustainable conversion of carbon dioxide to methanol using a metal-free covalent organic framework as a recyclable photocatalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00088a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 2D covalent organic framework (COF) was synthesized by copolymerization between 4,4′-biphenyldicarbaldehyde and 1,3,5-tris-(4-aminophenyl) triazine (TAPT). This COF exhibited excellent photocatalytic performance for the CO2 reduction to methanol.
Collapse
Affiliation(s)
- Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| | - Swarbhanu Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| | - Anjan Das
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| |
Collapse
|
30
|
Ma X, Xu W, Liang X, Qiu J. Low-temperature and gram-scale synthesis of chemically stable covalent organic frameworks in an aqueous medium. NEW J CHEM 2022. [DOI: 10.1039/d1nj06222k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and green scalable approach for production of chemically stable covalent organic frameworks (COFs) in aqueous medium at room temperature was reported by exploring an ionic liquid ([Bmim][N(CN)2) as the superior catalyst.
Collapse
Affiliation(s)
- Xueji Ma
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China
| | - Wan Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaoqian Liang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
31
|
Yadav P, Gupta R, Arora G, Srivastava A, Sharma RK. Synthesis of phenol esters by direct C–H activation of aldehydes using a highly efficient and reusable copper-immobilized polyimide covalent organic framework (Cu@PI-COF). NEW J CHEM 2022. [DOI: 10.1039/d1nj06055d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we report the design and fabrication of a thermally and chemically stable copper-based polyimide covalent organic framework (Cu@PI-COF) via a facile and straightforward synthetic approach for the oxidative esterification of aldehydes.
Collapse
Affiliation(s)
- Priya Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Radhika Gupta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Gunjan Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Anju Srivastava
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Rakesh K. Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
32
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
33
|
Troschke E, Oschatz M, Ilic IK. Schiff-bases for sustainable battery and supercapacitor electrodes. EXPLORATION (BEIJING, CHINA) 2021; 1:20210128. [PMID: 37323689 PMCID: PMC10190993 DOI: 10.1002/exp.20210128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
The quest for more efficient ways to store electrical energy prompted the development of different storage devices over the last decades. This includes but is not limited to different battery concepts and supercapacitors. However, modern batteries rely on electrochemical principles that often involve transition metals which can for instance suffer from toxicity or limited availability. More sustainable alternatives are needed. This sparked the search for organic electrode materials. Nevertheless, compared to their inorganic counterparts, organic electrode materials remain less intensely investigated. Besides the often more complicated electrochemical principles, one likely reason for that are the complex synthetic skills required to develop novel organic materials. Here we review materials synthesized by an old and comparably simple reaction from the field of organic chemistry, namely Schiff-base formation. This reaction can often yield materials under relatively mild conditions, making them especially interesting for the formation of sustainable electrodes. The main weakness of Schiff-base materials, susceptibility to hydrolysis, is of limited concern in most of the battery systems as they mostly anyways require water-free conditions. This review gives an overview of some selected nanomaterials obtained from Schiff-base formation as well as their carbonized derivatives which are of interest for energy storage. Firstly, the general chemistry of Schiff-bases is introduced, followed by an in-depth survey of the most important breakthroughs in the formation of organic battery electrodes that involve materials based on Schiff-base reaction. Lastly, an outlook considering the main hurdles as well as future perspectives of this research area is given.
Collapse
Affiliation(s)
- Erik Troschke
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental Chemistry, Friedrich‐Schiller‐University JenaJenaGermany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental Chemistry, Friedrich‐Schiller‐University JenaJenaGermany
| | - Ivan K. Ilic
- Center for Nano Science and Technology@PoliMiIstituto Italiano di TecnologiaMilanItaly
| |
Collapse
|
34
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Wang S, Yang L, Xu K, Chen H, Huang N. De Novo Fabrication of Large-Area and Self-Standing Covalent Organic Framework Films for Efficient Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44806-44813. [PMID: 34519198 DOI: 10.1021/acsami.1c14420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) have aroused extensive attention from various fields owing to their numerous advantages, including permanent porosity, high crystallinity, strong robustness, and well-ordered channels. However, the poor processability of the crystallite powder has greatly impeded their further utilization in many advanced devices and frontier areas. In this work, we fabricate a series of COF films using an interfacial polymerization strategy at a liquid-liquid interface under ambient conditions. The as-synthesized freestanding films are continuous, flexible, and defect-free and have large areas of up to 4 × 6 cm2. In addition, the pore sizes of these COF films can be well controlled based on the principle of reticular chemistry. These films exhibit high chemical stability even in acidic and basic aqueous solutions. More significantly, the highly robust COF films can serve as a nanofiltration membrane for efficient separation of pollutant molecules with different dimensions. These films show high selectivity for the separation of mixed molecule feed and excellent recyclability without a significant loss in the rejection rate.
Collapse
Affiliation(s)
- Shizhao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liting Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Lin J, Zhong Y, Tang L, Wang L, Yang M, Xia H. Covalent organic frameworks: From materials design to electrochemical energy storage applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jiamin Lin
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Yiren Zhong
- Department of Chemistry Energy Sciences Institute Yale University Yale Connecticut USA
| | - Lingyu Tang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Liuqi Wang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Mei Yang
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| | - Hui Xia
- School of Materials Science and Engineering Herbert Gleiter Institute of Nanoscience Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
37
|
Ortega-Guerrero A, Sahabudeen H, Croy A, Dianat A, Dong R, Feng X, Cuniberti G. Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26411-26420. [PMID: 34034486 DOI: 10.1021/acsami.1c05967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) have attracted attention as versatile active materials in many applications. Recent advances have demonstrated the synthesis of monolayer 2D COF via an air-water interface. However, the interfacial 2D polymerization mechanism has been elusive. In this work, we have used a multiscale modeling strategy to study dimethylmethylene-bridged triphenylamine building blocks confined at the air-water interface to form a 2D COF via Schiff-base reaction. A synergy between the computational investigations and experiments allowed the synthesis of a 2D-COF with one of the linkers considered. Our simulations complement the experimental characterization and show the preference of the building blocks to be at the interface with a favorable orientation for the polymerization. The air-water interface is shown to be a key factor to stabilize a flat conformation when a dimer molecule is considered. The structural and electronic properties of the monolayer COFs based on the two monomers are calculated and show a semiconducting nature with direct bandgaps. Our strategy provides a first step toward the in silico polymerization of 2D COFs at air-water interfaces capturing the initial steps of the synthesis up to the prediction of electronic properties of the 2D material.
Collapse
Affiliation(s)
- Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Hafeesudeen Sahabudeen
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow 14513, Germany
| | - Alexander Croy
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Renhao Dong
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
38
|
Liu W, Song S, Hao L, Wang C, Wu Q, Wang Z. Benzoxazine Porous Organic Polymer as an Efficient Solid-Phase Extraction Adsorbent for the Enrichment of Chlorophenols from Water and Honey Samples. J Chromatogr Sci 2021; 59:396-404. [PMID: 33367492 DOI: 10.1093/chromsci/bmaa106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 11/12/2022]
Abstract
Porous organic polymers have gained great research interest in the field of adsorption. A benzoxazine porous organic polymer (BoxPOP) constructed from p-phenylenediamine, 1,3,5-trihydroxybenzene and paraformaldehyde was fabricated and explored as an adsorbent for solid-phase extraction (SPE) of four chlorophenols from water and honey samples. Under the optimized SPE conditions, the response linearity for the analysis of the SPE extract of the chlorophenols by high performance liquid chromatography-diode array detector was observed in the range of 0.2-40.0 ng mL-1 for water samples and 5.0-400.0 ng g-1 for honey samples. The method detection limits of the analytes were 0.06-0.08 ng mL-1 for water samples and 1.5-2.0 ng g-1 for honey samples. The recoveries of the analytes from fortified water and honey samples ranged from 84.8 to 119.0% with the relative standard deviations below 8.4%. The results indicate that the prepared BoxPOP is an effective adsorbent for the chlorophenols. The established method provides an alternative approach for the determination of chlorophenols in real samples.
Collapse
Affiliation(s)
- Weihua Liu
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China.,Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China
| | - Shuangju Song
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Lin Hao
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China.,Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China.,Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China
| |
Collapse
|
39
|
Yue Y, Cai P, Xu X, Li H, Chen H, Zhou HC, Huang N. Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angew Chem Int Ed Engl 2021; 60:10806-10813. [PMID: 33635600 DOI: 10.1002/anie.202100717] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Indexed: 12/31/2022]
Abstract
The poor electrical conductivity of two-dimensional (2D) crystalline frameworks greatly limits their utilization in optoelectronics and sensor technology. Herein, we describe a conductive metallophthalocyanine-based NiPc-CoTAA framework with cobalt(II) tetraaza[14]annulene linkages. The high conjugation across the whole network combined with densely stacked metallophthalocyanine units endows this material with high electrical conductivity, which can be greatly enhanced by doping with iodine. The NiPc-CoTAA framework was also fabricated as thin films with different thicknesses from 100 to 1000 nm by the steam-assisted conversion method. These films enabled the detection of low-concentration gases and exhibited remarkable sensitivity and stability. This study indicates the enormous potential of metallophthalocyanine-based conductive frameworks in advanced stand-off chemical sensors and provides a general strategy through tailor-make molecular design to develop sensitive and stable chemical sensors for the detection of low-concentration gases.
Collapse
Affiliation(s)
- Yan Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
40
|
Structural Characteristics and Environmental Applications of Covalent Organic Frameworks. ENERGIES 2021. [DOI: 10.3390/en14082267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Covalent organic frameworks (COFs) are emerging crystalline polymeric materials with highly ordered intrinsic and uniform pores. Their synthesis involves reticular chemistry, which offers the freedom of choosing building precursors from a large bank with distinct geometries and functionalities. The pore sizes of COFs, as well as their geometry and functionalities, can be pre-designed, giving them an immense opportunity in various fields. In this mini-review, we will focus on the use of COFs in the removal of environmentally hazardous metal ions and chemicals through adsorption and separation. The review will introduce basic aspects of COFs and their advantages over other purification materials. Various fabrication strategies of COFs will be introduced in relation to the separation field. Finally, the challenges of COFs and their future perspectives in this field will be briefly outlined.
Collapse
|
41
|
Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Singh N, Yadav D, Mulay SV, Kim JY, Park NJ, Baeg JO. Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalysts for Visible Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14122-14131. [PMID: 33733735 DOI: 10.1021/acsami.0c21117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar light-driven fuel production from carbon dioxide using organic photocatalysts is a promising technique for sustainable energy sources. Band gap engineering in sustainable organic photocatalysts for improving efficiency and fulfilling the requirements is highly anticipated. Here, we present a new strategy to engineer the band gap in covalent organic framework (COF) photocatalysts by varying the push-pull electronic effect. To implement this strategy, we have designed and synthesized four different COFs using a tripodal amine 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-4-amine)) [Ttba] with 1,3,5-triformylbenzene (COF-1), 2,4,6-triformylphloroglucinol (COF-2), 2,4,6-triformylphenol (COF-3), and 2,4,6-triformylresorcinol (COF-4). On varying the number of hydroxyl units in the aldehyde precursor, the resulting COFs allow the fine-tuning of their band gap and band edge positions and result in different morphologies with varying surface areas. The enhanced optical properties of COF-3 and COF-4 with very suitable band gaps of 2.02 and 1.95 eV, respectively, enable them to demonstrate a high-efficiency photobiocatalytic system for NADH photoregeneration and enhanced visible light-driven formic acid production at a rate of 226.3 μmol g-1 in 90 min. The triazine core enables efficient charge separation, while the hydroxyl groups induce an electronic push-pull effect, regulating their photocatalytic efficiency. The results demonstrated the morphology-guided enhanced surface area and dual keto-enol tautomerism-induced push-pull effect in asymmetrical charge distribution as key features in the fine-tuning of the photocatalysts.
Collapse
Affiliation(s)
- Nem Singh
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea
| | - Dolly Yadav
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea
| | - Sandip V Mulay
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea
| | - Jae Young Kim
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea
| | - No-Joong Park
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 305 600, Republic of Korea
| |
Collapse
|
43
|
Machado TF, Serra MES, Murtinho D, Valente AJM, Naushad M. Covalent Organic Frameworks: Synthesis, Properties and Applications-An Overview. Polymers (Basel) 2021; 13:970. [PMID: 33809960 PMCID: PMC8004293 DOI: 10.3390/polym13060970] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Covalent Organic Frameworks (COFs) are an exciting new class of microporous polymers with unprecedented properties in organic material chemistry. They are generally built from rigid, geometrically defined organic building blocks resulting in robust, covalently bonded crystalline networks that extend in two or three dimensions. By strategically combining monomers with specific structures and properties, synthesized COF materials can be fine-tuned and controlled at the atomic level, with unparalleled precision on intrapore chemical environment; moreover, the unusually high pore accessibility allows for easy post-synthetic pore wall modification after the COF is synthesized. Overall, COFs combine high, permanent porosity and surface area with high thermal and chemical stability, crystallinity and customizability, making them ideal candidates for a myriad of promising new solutions in a vast number of scientific fields, with widely varying applications such as gas adsorption and storage, pollutant removal, degradation and separation, advanced filtration, heterogeneous catalysis, chemical sensing, biomedical applications, energy storage and production and a vast array of optoelectronic solutions. This review attempts to give a brief insight on COF history, the overall strategies and techniques for rational COF synthesis and post-synthetic functionalization, as well as a glance at the exponentially growing field of COF research, summarizing their main properties and introducing the numerous technological and industrial state of the art applications, with noteworthy examples found in the literature.
Collapse
Affiliation(s)
- Tiago F. Machado
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - M. Elisa Silva Serra
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Mu. Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
44
|
Yan X, Li H, Shang P, Liu H, Liu J, Zhang T, Xing G, Fang Q, Chen L. Facile synthesis of 3D covalent organic frameworks via a two-in-one strategy. Chem Commun (Camb) 2021; 57:2136-2139. [PMID: 33527948 DOI: 10.1039/d0cc08129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A "two-in-one" strategy was employed to construct 3D-COFs for the first time. Based on this strategy, a 3D-Flu-COF could be readily synthesized in various simplex organic solvents. Benefitting from the non-conjugated structure, the 3D-Flu-COF showcased excellent acidichromic sensing performance with good sensitivity, reversibility and naked eye visibility.
Collapse
Affiliation(s)
- Xiaoli Yan
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Pengna Shang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Huan Liu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Jingjuan Liu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Ting Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guolong Xing
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Guan Q, Guo H, Xue R, Wang M, Wu N, Cao Y, Zhao X, Yang W. Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Mikrochim Acta 2021; 188:85. [DOI: 10.1007/s00604-021-04744-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
|
46
|
Fenton JL, Burke DW, Qian D, Olvera de la Cruz M, Dichtel WR. Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes. J Am Chem Soc 2021; 143:1466-1473. [DOI: 10.1021/jacs.0c11159] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julie L. Fenton
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David W. Burke
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dingwen Qian
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
47
|
Díaz de Greñu B, Torres J, García-González J, Muñoz-Pina S, de Los Reyes R, Costero AM, Amorós P, Ros-Lis JV. Microwave-Assisted Synthesis of Covalent Organic Frameworks: A Review. CHEMSUSCHEM 2021; 14:208-233. [PMID: 32871058 DOI: 10.1002/cssc.202001865] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) are relatively recent materials. They have received great attention due to their interesting properties. However, the application of microwaves in their synthesis, despite its advantages such as faster and more reproducible processes, is a minority. Herein, a comprehensive compilation of the research results published in the microwave-assisted synthesis (MAS) of COFs is presented. This review includes articles of 2D and 3D COFs prepared using microwaves as source of energy. The articles have been classified depending on the functional groups including boronate ester, imines, enamines, azines, and triazines, among others. It compiles the main parameters of synthesis and characteristics of the materials together with some general issues related with COFs and microwaves. Additionally, current and future perspectives of the topic have been discussed.
Collapse
Affiliation(s)
- Borja Díaz de Greñu
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | - Juan Torres
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | - Javier García-González
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | - Sara Muñoz-Pina
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | | | - Ana M Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Jose V Ros-Lis
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| |
Collapse
|
48
|
Zhang S, Zhao S, Jing X, Niu Z, Feng X. Covalent organic framework-based membranes for liquid separation. Org Chem Front 2021. [DOI: 10.1039/d0qo01354d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the synthesis and characterization methods of COF-based membranes in recent years and discusses their separation mechanism and application in liquid separation.
Collapse
Affiliation(s)
- Sule Zhang
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Shuang Zhao
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Xuechun Jing
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Ziru Niu
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Xiao Feng
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| |
Collapse
|
49
|
Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chem Soc Rev 2021; 50:6871-6913. [PMID: 33881422 DOI: 10.1039/d0cs01569e] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalent organic frameworks are a class of extended crystalline organic materials that possess unique architectures with high surface areas and tuneable pore sizes. Since the first discovery of the topological frameworks in 2005, COFs have been applied as promising materials in diverse areas such as separation and purification, sensing or catalysis. Considering the need for renewable and clean energy production, many research efforts have recently focused on the application of porous materials for electrochemical energy storage and conversion. In this respect, considerable efforts have been devoted to the design and synthesis of COF-based materials for electrochemical applications, including electrodes and membranes for fuel cells, supercapacitors and batteries. This review article highlights the design principles and strategies for the synthesis of COFs with a special focus on their potential for electrochemical applications. Recently suggested hybrid COF materials or COFs with hierarchical porosity will be discussed, which can alleviate the most challenging drawback of COFs for these applications. Finally, the major challenges and future trends of COF materials in electrochemical applications are outlined.
Collapse
Affiliation(s)
- Xiaojia Zhao
- Hebei Normal University, College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, 20 South Second Ring East Road, Yuhua District, Shijiazhuang, 050024, Hebei, P. R. China and Technische Universität Berlin, Department of Chemistry, Functional Materials, Hardenbergstr. 40, 10623 Berlin, Germany.
| | - Pradip Pachfule
- Technische Universität Berlin, Department of Chemistry, Functional Materials, Hardenbergstr. 40, 10623 Berlin, Germany.
| | - Arne Thomas
- Technische Universität Berlin, Department of Chemistry, Functional Materials, Hardenbergstr. 40, 10623 Berlin, Germany.
| |
Collapse
|
50
|
Forouzandeh P, Pillai SC. Two-dimensional (2D) electrode materials for supercapacitors. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.05.233] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|