1
|
Černáková L, Haluz P, Mastihuba V, Košťálová Z, Karnišová Potocká E, Mastihubová M. Enzymatic β-Mannosylation of Phenylethanoid Alcohols. Molecules 2025; 30:414. [PMID: 39860283 PMCID: PMC11767590 DOI: 10.3390/molecules30020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.); (Z.K.)
| |
Collapse
|
2
|
Křen V, Bojarová P. Rutinosidase and other diglycosidases: Rising stars in biotechnology. Biotechnol Adv 2023; 68:108217. [PMID: 37481095 DOI: 10.1016/j.biotechadv.2023.108217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Diglycosidases are a special class of glycosidases (EC 3.2.1) that catalyze the separation of intact disaccharide moieties from the aglycone part. The main diglycosidase representatives comprise rutinosidases that cleave rutinose (α-l-Rha-(1-6)-β-d-Glc) from rutin or other rutinosides, and (iso)primeverosidases processing (iso)primeverosides (d-Xyl-(1-6)-β-d-Glc), but other activities are known. Notably, some diglycosidases may be ranked as monoglucosidases with enlarged substrate specificity. Diglycosidases are found in various microorganisms and plants. Diglycosidases are used in the food industry for aroma enhancement and flavor modification. Besides their hydrolytic activity, they also possess pronounced synthetic (transglycosylating) capabilities. Recently, they have been demonstrated to glycosylate various substrates in a high yield, including peculiar species like inorganic azide or carboxylic acids, which is a unique feature in biocatalysis. Rhamnose-containing compounds such as rutinose are currently receiving increased attention due to their proven activity in anti-cancer and dermatological experimental studies. This review demonstrates the vast and yet underrated biotechnological potential of diglycosidases from various sources (plant, microbial), and reveals perspectives on the use of these catalysts as well as of their products in biotechnology.
Collapse
Affiliation(s)
- Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| |
Collapse
|
3
|
Kotik M, Kulik N, Valentová K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14890-14910. [PMID: 37800688 PMCID: PMC10591481 DOI: 10.1021/acs.jafc.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.
Collapse
Affiliation(s)
- Michael Kotik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| |
Collapse
|
4
|
Haluz P, Kis P, Cvečko M, Mastihubová M, Mastihuba V. Acuminosylation of Tyrosol by a Commercial Diglycosidase. Int J Mol Sci 2023; 24:ijms24065943. [PMID: 36983015 PMCID: PMC10059904 DOI: 10.3390/ijms24065943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
A commercial glycosidase mixture obtained from Penicillium multicolor (Aromase H2) was found to comprise a specific diglycosidase activity, β-acuminosidase, alongside undetectable levels of β-apiosidase. The enzyme was tested in the transglycosylation of tyrosol using 4-nitrophenyl β-acuminoside as the diglycosyl donor. The reaction was not chemoselective, providing a mixture of Osmanthuside H and its counterpart regioisomer 4-(2-hydroxyethyl)phenyl β-acuminoside in 58% yield. Aromase H2 is therefore the first commercial β-acuminosidase which is also able to glycosylate phenolic acceptors.
Collapse
Affiliation(s)
- Peter Haluz
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Peter Kis
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Matej Cvečko
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
5
|
Bassanini I, Grosso S, Tognoli C, Fronza G, Riva S. Studies on the Oxidation of Aromatic Amines Catalyzed by Trametes versicolor Laccase. Int J Mol Sci 2023; 24:ijms24043524. [PMID: 36834934 PMCID: PMC9963649 DOI: 10.3390/ijms24043524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The bio-oxidation of a series of aromatic amines catalyzed by T. versicolor laccase has been investigated exploiting either commercially available nitrogenous substrates [(E)-4-vinyl aniline and diphenyl amine] or ad hoc synthetized ones [(E)-4-styrylaniline, (E)-4-(prop-1-en-1-yl)aniline and (E)-4-(((4-methoxyphenyl)imino)methyl)phenol]. At variance to their phenolic equivalents, the investigated aromatic amines were not converted into the expected cyclic dimeric structures under T. versicolor catalysis. The formation of complex oligomeric/polymeric or decomposition by-products was mainly observed, with the exception of the isolation of two interesting but unexpected chemical skeletons. Specifically, the biooxidation of diphenylamine resulted in an oxygenated quinone-like product, while, to our surprise, in the presence of T. versicolor laccase (E)-4-vinyl aniline was converted into a 1,2-substited cyclobutane ring. To the best of our knowledge, this is the first example of an enzymatically triggered [2 + 2] olefin cycloaddition. Possible reaction mechanisms to explain the formation of these products are also reported.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche-SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milan, Italy
- Correspondence: (I.B.); (S.R.)
| | - Simone Grosso
- Istituto di Scienze e Tecnologie Chimiche-SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milan, Italy
| | - Chiara Tognoli
- Istituto di Scienze e Tecnologie Chimiche-SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milan, Italy
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanni Fronza
- Istituto di Scienze e Tecnologie Chimiche-SCITEC, Consiglio Nazionale delle Ricerche, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche-SCITEC, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milan, Italy
- Correspondence: (I.B.); (S.R.)
| |
Collapse
|
6
|
Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays. Molecules 2021; 26:molecules26247607. [PMID: 34946703 PMCID: PMC8709365 DOI: 10.3390/molecules26247607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.
Collapse
|
7
|
Hollá V, Karkeszová K, Antošová M, Polakovič M. Transglycosylation properties of a Kluyveromyces lactis enzyme preparation: Production of tyrosol β-fructoside using free and immobilized enzyme. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Mao Z, Liu L, Zhang Y, Yuan J. Efficient Synthesis of Phenylacetate and 2-Phenylethanol by Modular Cascade Biocatalysis. Chembiochem 2020; 21:2676-2679. [PMID: 32291886 DOI: 10.1002/cbic.202000182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Indexed: 11/12/2022]
Abstract
The green and sustainable synthesis of chemicals from renewable feedstocks by a biotransformation approach has gained increasing attention in recent years. In this work, we developed enzymatic cascades to efficiently convert l-phenylalanine into 2-phenylethanol (2-PE) and phenylacetic acid (PAA), l-tyrosine into tyrosol (p-hydroxyphenylethanol, p-HPE) and p-hydroxyphenylacetic acid (p-HPAA). The enzymatic cascade was cast into an aromatic aldehyde formation module, followed by an aldehyde reduction module, or aldehyde oxidation module, to achieve one-pot biotransformation by using recombinant Escherichia coli. Biotransformation of 50 mM l-Phe produced 6.76 g/L PAA with more than 99 % conversion and 5.95 g/L of 2-PE with 97 % conversion. The bioconversion efficiencies of p-HPAA and p-HPE from l-Tyr reached to 88 and 94 %, respectively. In addition, m-fluoro-phenylalanine was further employed as an unnatural aromatic amino acid substrate to obtain m-fluoro-phenylacetic acid; >96 % conversion was achieved. Our results thus demonstrated high-yielding and potential industrial synthesis of above aromatic compounds by one-pot cascade biocatalysis.
Collapse
Affiliation(s)
- Zuoxi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| |
Collapse
|
9
|
Hollá V, Hill R, Antošová M, Polakovič M. Design of immobilized biocatalyst and optimal conditions for tyrosol β-galactoside production. Bioprocess Biosyst Eng 2020; 44:93-101. [PMID: 32816074 DOI: 10.1007/s00449-020-02425-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Tyrosol β-galactoside (TG) is a phenylethanoid glycoside with proven neuroprotective properties. This work deals with its biocatalytic production from tyrosol and lactose using Aspergillus oryzae β-galactosidase in immobilized form. Six commercial carriers were examined to find the optimal biocatalyst. Besides standard biocatalyst performance characteristics, adsorption of the hydrophobic substrate on immobilization carrier matrices was also investigated. The adsorption of tyrosol was significant, but it did not have adverse effects on TG production. On the contrary, TG yield was improved for some biocatalysts. A biocatalyst prepared by covalent binding of β-galactosidase on an epoxy-activated carrier was used for detailed investigation of the effect of reaction conditions on glycoside production. Temperature had a surprisingly weak effect on the overall process rate. A lactose concentration of 0.83 M was found to be optimal to enhance TG formation. The impact of tyrosol concentration was rather complex. This substrate caused inhibition of all reactions. Its concentration had a strong effect on the hydrolysis of lactose and all products. Higher tyrosol concentrations, 30-40 g/L, were favorable as pseudo-equilibrium concentrations of TG and galactooligosaccharide were reached. Repeated batch results revealed excellent operational stability of the biocatalyst.
Collapse
Affiliation(s)
- Veronika Hollá
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rhiannon Hill
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Monika Antošová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
10
|
Karnišová Potocká E, Mastihubová M, Mastihuba V. Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem 2020; 336:127674. [PMID: 32781353 DOI: 10.1016/j.foodchem.2020.127674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Dried flower buds of Japanese sophora (Sophora japonica) comprising rutinosidase activity were tested in rutinosylation of tyrosol via transglycosylation process from rutin. Optimal conditions for transrutinosylation of tyrosol were 49 mM rutin and 290 mM tyrosol, giving maximum conversion up to 66.4% and 24% yield of isolated and purified rutinoside. The rutinosylation proceeded exclusively on the primary hydroxyl of tyrosol, thus forming rhamnosylated derivative of salidroside. This strict regioselectivity differentiates the sophora biocatalyst from microbial rutinosidases.
Collapse
Affiliation(s)
- Elena Karnišová Potocká
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
11
|
Pachl P, Kapešová J, Brynda J, Biedermannová L, Pelantová H, Bojarová P, Křen V, Řezáčová P, Kotik M. Rutinosidase from
Aspergillus niger
: crystal structure and insight into the enzymatic activity. FEBS J 2020; 287:3315-3327. [DOI: 10.1111/febs.15208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Petr Pachl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Jana Kapešová
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
| | - Lada Biedermannová
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
| | - Michael Kotik
- Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
12
|
Weiz G, Mazzaferro LS, Kotik M, Neher BD, Halada P, Křen V, Breccia JD. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl Microbiol Biotechnol 2019; 103:9493-9504. [PMID: 31705182 DOI: 10.1007/s00253-019-10180-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
AbstractDiglycosidases hydrolyze the heterosidic linkage of diglycoconjugates, releasing the disaccharide and the aglycone. Usually, these enzymes do not hydrolyze or present only low activities towards monoglycosylated compounds. The flavonoid degrading fungus Acremonium sp. DSM 24697 produced two diglycosidases, which were termed 6-O-α-rhamnosyl-β-glucosidase I and II (αRβG I and II) because of their function of releasing the disaccharide rutinose (6-O-α-L-rhamnosyl-β-D-glucose) from the diglycoconjugates hesperidin or rutin. In this work, the genome of Acremonium sp. DSM 24697 was sequenced and assembled with a size of ~ 27 Mb. The genes encoding αRβG I and II were expressed in Pichia pastoris KM71 and the protein products were purified with apparent molecular masses of 42 and 82 kDa, respectively. A phylogenetic analysis showed that αRβG I grouped in glycoside hydrolase family 5, subfamily 23 (GH5), together with other fungal diglycosidases whose substrate specificities had been reported to be different from αRβG I. On the other hand, αRβG II grouped in glycoside hydrolase family 3 (GH3) and thus is the first GH3 member that hydrolyzes the heterosidic linkage of rutinosylated compounds. The substrate scopes of the enzymes were different: αRβG I showed exclusive specificity toward 7-O-β-rutinosyl flavonoids, whereas αRβG II hydrolyzed both 7-O-β-rutinosyl- and 3-O-β-rutinosyl- flavonoids. None of the enzymes displayed activity toward 7-O-β-neohesperidosyl- flavonoids. The recombinant enzymes also exhibited transglycosylation activities, transferring rutinose from hesperidin or rutin onto various alcoholic acceptors. The different substrate scopes of αRβG I and II may be part of an optimized strategy of the original microorganism to utilize different carbon sources.
Collapse
Affiliation(s)
- Gisela Weiz
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Laura S Mazzaferro
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Bárbara D Neher
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Javier D Breccia
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| |
Collapse
|
13
|
Bassanini I, Kapešová J, Petrásková L, Pelantová H, Markošová K, Rebroš M, Valentová K, Kotik M, Káňová K, Bojarová P, Cvačka J, Turková L, Ferrandi EE, Bayout I, Riva S, Křen V. Glycosidase‐Catalyzed Synthesis of Glycosyl Esters and Phenolic Glycosides of Aromatic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento MolecolareConsiglio Nazionale delle Ricerche Via Mario Bianco 9 I 20131 Milano Italy
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di Milano Via Mangiagalli 25 I 20131 Milano Italy
| | - Jana Kapešová
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Kristína Markošová
- Institute of BiotechnologySlovak University of Technology Radlinského 9 SK 81237 Bratislava Slovakia
| | - Martin Rebroš
- Institute of BiotechnologySlovak University of Technology Radlinského 9 SK 81237 Bratislava Slovakia
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Michael Kotik
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of Sciences Flemingovo nám. 2 CZ 16610 Prague 6 Czech Republic
| | - Lucie Turková
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| | - Erica E. Ferrandi
- Istituto di Chimica del Riconoscimento MolecolareConsiglio Nazionale delle Ricerche Via Mario Bianco 9 I 20131 Milano Italy
| | - Ikram Bayout
- Istituto di Chimica del Riconoscimento MolecolareConsiglio Nazionale delle Ricerche Via Mario Bianco 9 I 20131 Milano Italy
- Asymmetric Catalysis Laboratory (LCAE)Badji Mokhtar Annaba-University B.P. 12 23000 Annaba Algeria
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento MolecolareConsiglio Nazionale delle Ricerche Via Mario Bianco 9 I 20131 Milano Italy
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ 14220 Prague 4 Czech Republic
| |
Collapse
|
14
|
Kapešová J, Petrásková L, Markošová K, Rebroš M, Kotik M, Bojarová P, Křen V. Bioproduction of Quercetin and Rutinose Catalyzed by Rutinosidase: Novel Concept of "Solid State Biocatalysis". Int J Mol Sci 2019; 20:E1112. [PMID: 30841519 PMCID: PMC6429052 DOI: 10.3390/ijms20051112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Quercetin is a flavonoid largely employed as a phytochemical remedy and a food or dietary supplement. We present here a novel biocatalytic methodology for the preparation of quercetin from plant-derived rutin, with both substrate and product being in mostly an undissolved state during biotransformation. This "solid-state" enzymatic conversion uses a crude enzyme preparation of recombinant rutinosidase from Aspergillus niger yielding quercetin, which precipitates from virtually insoluble rutin. The process is easily scalable and exhibits an extremely high space-time yield. The procedure has been shown to be robust and was successfully tested with rutin concentrations of up to 300 g/L (ca 0.5 M) at various scales. Using this procedure, pure quercetin is easily obtained by mere filtration of the reaction mixture, followed by washing and drying of the filter cake. Neither co-solvents nor toxic chemicals are used, thus the process can be considered environmentally friendly and the product of "bio-quality." Moreover, rare disaccharide rutinose is obtained from the filtrate at a preparatory scale as a valuable side product. These results demonstrate for the first time the efficiency of the "Solid-State-Catalysis" concept, which is applicable virtually for any biotransformation involving substrates and products of low water solubility.
Collapse
Affiliation(s)
- Jana Kapešová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - Kristína Markošová
- Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Martin Rebroš
- Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Michael Kotik
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
15
|
Gandomkar S, Żądło‐Dobrowolska A, Kroutil W. Extending Designed Linear Biocatalytic Cascades for Organic Synthesis. ChemCatChem 2019; 11:225-243. [PMID: 33520008 PMCID: PMC7814890 DOI: 10.1002/cctc.201801063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 02/05/2023]
Abstract
Artificial cascade reactions involving biocatalysts have demonstrated a tremendous potential during the recent years. This review just focuses on selected examples of the last year and putting them into context to a previously published suggestion for classification. Subdividing the cascades according to the number of catalysts in the linear sequence, and classifying whether the steps are performed simultaneous or in a sequential fashion as well as whether the reaction sequence is performed in vitro or in vivo allows to organise the concepts. The last year showed, that combinations of in vivo as well as in vitro are possible. Incompatible reaction steps may be run in a sequential fashion or by compartmentalisation of the incompatible steps either by using special reactors (membrane), polymersomes or flow techniques.
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28Graz8010Austria
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28Graz8010Austria
| |
Collapse
|
16
|
Mazzaferro LS, Weiz G, Braun L, Kotik M, Pelantová H, Křen V, Breccia JD. Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase fromAcremoniumsp. DSM 24697. Biotechnol Appl Biochem 2018; 66:53-59. [DOI: 10.1002/bab.1695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Laura S. Mazzaferro
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Gisela Weiz
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Lucas Braun
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Helena Pelantová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology; Czech Academy of Sciences; Prague Czech Republic
| | - Javier D. Breccia
- INCITAP (CONICET-UNLPam) National Scientific and Technical Research Council, Department of Chemistry, Faculty of Natural Sciences; National University of La Pampa (UNLPam); Santa Rosa La Pampa Argentina
| |
Collapse
|
17
|
Panzella L, DellaGreca M, Longobardo L. A Facile Preparation of Hydroxycinnamyl Alcohols withSimultaneous Protection of Phenol Groups as Carbonate. ChemistrySelect 2018. [DOI: 10.1002/slct.201802099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucia Panzella
- Department of Chemical Science; University of Napoli Federico II Via Cinthia 4; 80126 Napoli Italy
| | - Marina DellaGreca
- Department of Chemical Science; University of Napoli Federico II Via Cinthia 4; 80126 Napoli Italy
| | - Luigi Longobardo
- Department of Chemical Science; University of Napoli Federico II Via Cinthia 4; 80126 Napoli Italy
| |
Collapse
|
18
|
Koseki T, Ishikawa M, Kawasaki M, Shiono Y. β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl Microbiol Biotechnol 2018; 102:8717-8723. [DOI: 10.1007/s00253-018-9286-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
19
|
Slámová K, Kapešová J, Valentová K. "Sweet Flavonoids": Glycosidase-Catalyzed Modifications. Int J Mol Sci 2018; 19:E2126. [PMID: 30037103 PMCID: PMC6073497 DOI: 10.3390/ijms19072126] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023] Open
Abstract
Natural flavonoids, especially in their glycosylated forms, are the most abundant phenolic compounds found in plants, fruit, and vegetables. They exhibit a large variety of beneficial physiological effects, which makes them generally interesting in a broad spectrum of scientific areas. In this review, we focus on recent advances in the modifications of the glycosidic parts of various flavonoids employing glycosidases, covering both selective trimming of the sugar moieties and glycosylation of flavonoid aglycones by natural and mutant glycosidases. Glycosylation of flavonoids strongly enhances their water solubility and thus increases their bioavailability. Antioxidant and most biological activities are usually less pronounced in glycosides, but some specific bioactivities are enhanced. The presence of l-rhamnose (6-deoxy-α-l-mannopyranose) in rhamnosides, rutinosides (rutin, hesperidin) and neohesperidosides (naringin) plays an important role in properties of flavonoid glycosides, which can be considered as "pro-drugs". The natural hydrolytic activity of glycosidases is widely employed in biotechnological deglycosylation processes producing respective aglycones or partially deglycosylated flavonoids. Moreover, deglycosylation is quite commonly used in the food industry aiming at the improvement of sensoric properties of beverages such as debittering of citrus juices or enhancement of wine aromas. Therefore, natural and mutant glycosidases are excellent tools for modifications of flavonoid glycosides.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Jana Kapešová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
20
|
Zhou Y, Wu S, Mao J, Li Z. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. CHEMSUSCHEM 2018; 11:2221-2228. [PMID: 29766662 DOI: 10.1002/cssc.201800709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Production of chemicals from renewable feedstocks has been an important task for sustainable chemical industry. Although microbial fermentation has been widely employed to produce many biochemicals, it is still very challenging to access non-natural chemicals. Two methods (biotransformation and fermentation) have been developed for the first bio-derived synthesis of benzylamine, a commodity non-natural amine with broad applications. Firstly, a nine-step artificial enzyme cascade was designed by biocatalytic retrosynthetic analysis and engineered in recombinant E. coli LZ243. Biotransformation of l-phenylalanine (60 mm) with the E. coli cells produced benzylamine (42 mm) in 70 % conversion. Importantly, the cascade biotransformation was scaled up to 100 mL and benzylamine was successfully isolated in 57 % yield. Secondly, an artificial biosynthesis pathway to benzylamine from glucose was developed by combining the nine-step cascade with an enhanced l-phenylalanine synthesis pathway in cells. Fermentation with E. coli LZ249 gave benzylamine in 4.3 mm concentration from glucose. In addition, one-pot syntheses of several useful benzylamines from the easily available styrenes were achieved, representing a new type of alkene transformation by formal oxidative cleavage and reductive amination.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
21
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|