1
|
Lal Bose A, Agarwal V. Oxygen Healing and CO 2 /H 2 /Anisole Dissociation on Reduced Molybdenum Oxide Surfaces Studied by Density Functional Theory. Chemphyschem 2022; 23:e202200510. [PMID: 35983612 DOI: 10.1002/cphc.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Indexed: 01/05/2023]
Abstract
Reduced molybdenum oxides are versatile catalysts for deoxygenation and hydrodeoxygenation reactions. In this work, we have performed spin-polarized DFT calculations to investigate oxygen healing energies on reduced molybdenum oxides (reduced α-MoO3 , γ-Mo4 O11 and MoO2 ). We find that Mo+4 on MoO2 (100) is the most active for abstracting an oxygen from the oxygenated compounds. We further explored CO2 adsorption and dissociation on reduced α-MoO3 (010) and MoO2 (100). In comparison to reduced α-MoO3 (010), CO2 adsorbs more strongly on MoO2 (100). We find that CO2 dissociates on MoO2 (100) via a two-step process, the overall barrier for which is 0.6 eV. This barrier is 1.7 eV lower than that on reduced α-MoO3 (010), suggesting a much higher activity for deoxygenation of CO2 to CO. As H2 dissociation is shown to be the rate-limiting step for hydrodeoxygenation reactions, we also studied activation barriers for H2 chemisorption on MoO2 (100). We find that the chemisorption barriers are 0.7 eV lower than that reported on reduced α-MoO3 (010). Finally, we have studied the dissociation (C-O cleavage) of anisole (a lignin-based biofuel model compound) on MoO2 (100). We find that anisole binds very strongly on MoO2 (100) with an adsorption energy of -1.47 eV. According to Sabatier's principle, strongly adsorbing reactants poison the catalyst surface, which may explain the low activity of MoO2 observed during experiments for hydrodeoxygenation of anisole.
Collapse
Affiliation(s)
- Abir Lal Bose
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Vishal Agarwal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
2
|
Butolia PS, Xi X, Winkelman JGM, Stuart MCA, van Akker M, Heeres A, Heeres HJ, Xie J. Advantages of Producing Aromatics from Propene over Ethene Using Zeolite‐Based Catalysts. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paresh S. Butolia
- University of Groningen Green Chemical Reaction Engineering, Engineering & Technology Institute Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Xiaoying Xi
- University of Groningen Green Chemical Reaction Engineering, Engineering & Technology Institute Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Jozef G. M. Winkelman
- University of Groningen Green Chemical Reaction Engineering, Engineering & Technology Institute Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Marc C. A. Stuart
- University of Groningen Groningen Biomolecular Sciences and Biotechnology Institute Nijenborgh 7 9747AG Groningen The Netherlands
- University of Groningen Stratingh Institute for Chemistry Nijenborgh 4 9747AG Groningen The Netherlands
| | | | - André Heeres
- Hanze University of Applied Sciences Research Centre Biobased Economy Zernikeplein 11 9747AS Groningen The Netherlands
| | - Hero Jan Heeres
- University of Groningen Green Chemical Reaction Engineering, Engineering & Technology Institute Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Jingxiu Xie
- University of Groningen Green Chemical Reaction Engineering, Engineering & Technology Institute Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
3
|
Ioannidou G, Loukia Yfanti V–, Lemonidou AA. Optimization of reaction conditions for hydrodeoxygenation of bio-glycerol towards green propylene over molybdenum-based catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Vapor Phase Conversion of Furfural to Valuable Biofuel and Chemicals Over Alumina-Supported Catalysts: Screening Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01470-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Zhao J, Liu M, Fan G, Yang L, Li F. Efficient Transfer Hydrogenolysis of 5-Hydromethylfurfural to 2,5-Dimethylfuran over CoFe Bimetallic Catalysts Using Formic Acid as a Sustainable Hydrogen Donor. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengran Liu
- Beijing Institute of Aerospace Testing Technology, Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing 100074, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Jiang H, Lu R, Luo X, Si X, Xu J, Lu F. Molybdenum-Catalyzed Deoxygenation Coupling of Lignin-Derived Alcohols for Functionalized Bibenzyl Chemicals. Chemistry 2021; 27:1292-1296. [PMID: 32929787 DOI: 10.1002/chem.202003776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 01/05/2023]
Abstract
With the growing demand for sustainability and reducing CO2 footprint, lignocellulosic biomass has attracted much attention as a renewable, carbon-neutral and low-cost feedstock for the production of chemicals and fuels. To realize efficient utilization of biomass resource, it is essential to selectively alter the high degree of oxygen functionality of biomass-derivates. Herein, we introduced a novel procedure to transform renewable lignin-derived alcohols to various functionalized bibenzyl chemicals. This strategy relied on a short deoxygenation coupling pathway with economical molybdenum catalyst. A well-designed H-donor experiment was performed to investigate the mechanism of this Mo-catalyzed process. It was proven that benzyl carbon-radical was the most possible intermediate to form the bibenzyl products. It was also discovered that the para methoxy and phenolic hydroxyl groups could stabilize the corresponding radical intermediates and then facilitate to selectively obtain bibenzyl products. Our research provides a promising application to produce functionalized aromatics from biomass-derived materials.
Collapse
Affiliation(s)
- Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Xiaolin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
7
|
Gong H, Zhou C, Cui Y, Dai S, Zhao X, Luo R, An P, Li H, Wang H, Hou Z. Direct Transformation of Glycerol to Propanal using Zirconium Phosphate-Supported Bimetallic Catalysts. CHEMSUSCHEM 2020; 13:4954-4966. [PMID: 32666698 DOI: 10.1002/cssc.202001600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Selective transformation of glycerol to propanal (PA) provides a feasible route towards the sustainable synthesis of high value-added chemicals. In this work, zirconium phosphate (ZrP) was studied as support and Ru and Co as metal sites for glycerol hydrogenolysis in a continuous-flow reactor. It was found that ZrP-supported Co-O species had a moderate selectivity to PA (49.5 %) in glycerol hydrogenolysis. Notably, once Ru species were doped into CoO/ZrP, the resulting catalyst exhibited not only an outstanding catalytic performance for glycerol hydrogenolysis to PA (a selectivity of 80.2 % at full conversion), but also a high stability at least a 50 h long-term performance. The spent catalyst could be regenerated by calcining in air to remove carbonaceous deposits. Characterization indicated that the acid sites on ZrP played a very critical role in the dehydration of glycerol into acrolein (AE), that the distribution of Co was uniform, basically consistent with that of Zr, P and Ru, and that an especially close contact between Co-O and Ru species was formed on Ru/CoO/ZrP catalyst. The further activity tests and characterizations confirmed that there was a strong interaction between the dispersed Co-O species and Ru0 nanoparticles, which endowed Ru sites with high electronic density. This effect could play a role in facilitating the dissociation of H2 , and thus in promoting the hydrogenation reaction. Besides, DFT calculations suggested that the Co-O species can adsorb more strongly the C=C bond of the intermediate AE on a highly coordinatively unsaturated Co (Cocus ) site and thus lead to preferential hydrogenation at the C=C bond of AE to PA.
Collapse
Affiliation(s)
- Honghui Gong
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chuan Zhou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Cui
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruihan Luo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pengfei An
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing Synchrotron Radiation Facility(BSRF), Beijing, 100049, P. R. China
| | - Huan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Stalpaert M, Janssens K, Marquez C, Henrion M, Bugaev AL, Soldatov AV, De Vos D. Olefins from Biobased Sugar Alcohols via Selective, Ru-Mediated Reaction in Catalytic Phosphonium Ionic Liquids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Stalpaert
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Kwinten Janssens
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Carlos Marquez
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Mickaël Henrion
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Aram L. Bugaev
- The Smart Materials Research Center, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Alexander V. Soldatov
- The Smart Materials Research Center, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Dirk De Vos
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| |
Collapse
|
9
|
Fu J, Lym J, Zheng W, Alexopoulos K, Mironenko AV, Li N, Boscoboinik JA, Su D, Weber RT, Vlachos DG. C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat Catal 2020. [DOI: 10.1038/s41929-020-0445-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Daelman N, Hegner FS, Rellán-Piñeiro M, Capdevila-Cortada M, García-Muelas R, López N. Quasi-degenerate states and their dynamics in oxygen deficient reducible metal oxides. J Chem Phys 2020; 152:050901. [PMID: 32035446 DOI: 10.1063/1.5138484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physical and chemical properties of oxides are defined by the presence of oxygen vacancies. Experimentally, non-defective structures are almost impossible to achieve due to synthetic constraints. Therefore, it is crucial to account for vacancies when evaluating the characteristics of these materials. The electronic structure of oxygen-depleted oxides deeply differs from that of the native forms, in particular, of reducible metal oxides, where excess electrons can localize in various distinct positions. In this perspective, we present recent developments from our group describing the complexity of these defective materials that highlight the need for an accurate description of (i) intrinsic vacancies in polar terminations, (ii) multiple geometries and complex electronic structures with several states attainable at typical working conditions, and (iii) the associated dynamics for both vacancy diffusion and the coexistence of more than one electronic structure. All these aspects widen our current understanding of defects in oxides and need to be adequately introduced in emerging high-throughput screening methodologies.
Collapse
Affiliation(s)
- Nathan Daelman
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Franziska Simone Hegner
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos Rellán-Piñeiro
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marçal Capdevila-Cortada
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Oliveira RR, Rocha AB. Acrylic acid hydrodeoxygenation reaction mechanism over molybdenum carbide studied by DFT calculations. J Mol Model 2019; 25:309. [DOI: 10.1007/s00894-019-4186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022]
|
12
|
Wang Y, Xiao Y, Xiao G. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Wang H, Zhu C, Liu Q, Tan J, Wang C, Liang Z, Ma L. Selective Conversion of Cellulose to Hydroxyacetone and 1-Hydroxy-2-Butanone with Sn-Ni Bimetallic Catalysts. CHEMSUSCHEM 2019; 12:2154-2160. [PMID: 30767387 DOI: 10.1002/cssc.201900172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The high-value-added chemicals hydroxyacetone (HA) and 1-hydroxy-2-butanone (HB) were produced from agricultural waste over a Ni3 Sn4 -SnOx catalyst. The Sn-Ni intermetallic compound and SnOx acted as the active sites for HA and HB production by selectively cleaving the target C-C and C-O bonds. Approximately 70 % of the total HA and HB yield was obtained by selective hydrogenolysis of cellulose. This strategy expands the application of cellulose towards renewable production of high-value C3 and C4 keto-alcohols from cellulosic biomass.
Collapse
Affiliation(s)
- Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, P.R. China
| | - Jin Tan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Zheng Liang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| |
Collapse
|
14
|
Shi H. Valorization of Biomass‐derived Small Oxygenates: Kinetics, Mechanisms and Site Requirements of H2‐involved Hydrogenation and Deoxygenation Pathways over Heterogeneous Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201801828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Shi
- Department of Chemistry, Catalysis Research CenterTechnical University Munich Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
15
|
Li J, Zhang J, Wang S, Xu G, Wang H, Vlachos DG. Chemoselective Hydrodeoxygenation of Carboxylic Acids to Hydrocarbons over Nitrogen-Doped Carbon–Alumina Hybrid Supported Iron Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04967] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiang Li
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Junjie Zhang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Shuai Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Guangyue Xu
- Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Wang
- Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Wan W, Ammal SC, Lin Z, You KE, Heyden A, Chen JG. Controlling reaction pathways of selective C-O bond cleavage of glycerol. Nat Commun 2018; 9:4612. [PMID: 30397199 PMCID: PMC6218480 DOI: 10.1038/s41467-018-07047-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
The selective hydrodeoxygenation (HDO) reaction is desirable to convert glycerol into various value-added products by breaking different numbers of C-O bonds while maintaining C-C bonds. Here we combine experimental and density functional theory (DFT) results to reveal that the Cu modifier can significantly reduce the oxophilicity of the molybdenum carbide (Mo2C) surface and change the product distribution. The Mo2C surface is active for breaking all C-O bonds to produce propylene. As the Cu coverage increases to 0.5 monolayer (ML), the Cu/Mo2C surface shows activity towards breaking two C-O bonds and forming ally-alcohol and propanal. As the Cu coverage further increases, the Cu/Mo2C surface cleaves one C-O bond to form acetol. DFT calculations reveal that the Mo2C surface, Cu-Mo interface, and Cu surface are distinct sites for the production of propylene, ally-alcohol, and acetol, respectively. This study explores the feasibility of tuning the glycerol HDO selectivity by modifying the surface oxophilicity.
Collapse
Affiliation(s)
- Weiming Wan
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Salai C Ammal
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Zhexi Lin
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kyung-Eun You
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Andreas Heyden
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
17
|
García‐Muelas R, Rellán‐Piñeiro M, Li Q, López N. Developments in the Atomistic Modelling of Catalytic Processes for the Production of Platform Chemicals from Biomass. ChemCatChem 2018. [DOI: 10.1002/cctc.201801271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo García‐Muelas
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| | - Marcos Rellán‐Piñeiro
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| | - Qiang Li
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQThe Barcelona Institute of Science and Technology Av. Països Catalans 16 Tarragona 43007 Spain
| |
Collapse
|
18
|
Perspective on catalyst development for glycerol reduction to C3 chemicals with molecular hydrogen. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3481-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Rellán-Piñeiro M, López N. One Oxygen Vacancy, Two Charge States: Characterization of Reduced α-MoO 3(010) through Theoretical Methods. J Phys Chem Lett 2018; 9:2568-2573. [PMID: 29703080 DOI: 10.1021/acs.jpclett.8b00536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molybdenum oxides are finding increasing applications that rely on their redox character. For the most common polymorph, α-MoO3, oxygen vacancy formation leaves two electrons on the surface that can be stored as small polarons. Detailed density functional theory calculations that properly account for the self-interaction term, Ueff = 3.5 eV, show that the vacancy generates two different configurations: either two Mo5+ centers (Mo5+□ and Mo5+═O) or a single double-reduced Mo4+. These states are separated by 0.22 eV with a barrier for interconversion of 0.33 eV, and thus both are populated at catalytic temperatures, as shown by first-principles molecular dynamics. At higher reduction levels, vacancies can only be accumulated along a preferential direction and the energy difference between the 2×Mo5+ and Mo4+ configurations is reduced. These results point out the need for a revision of the experimental assignments based on our characterization that includes charges, vibrational frequencies, and XPS signatures.
Collapse
Affiliation(s)
- Marcos Rellán-Piñeiro
- Institute of Chemical Research of Catalonia, ICIQ, and The Barcelona Institute of Science and Technology , BIST, Av. Països Catalans 16 , 43007 Tarragona , Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQ, and The Barcelona Institute of Science and Technology , BIST, Av. Països Catalans 16 , 43007 Tarragona , Spain
| |
Collapse
|
20
|
|