1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Halilu A, Hadj-Kali MK, Hashim MA, Ali EM, Bhargava SK. Electroreduction of CO 2 and Quantification in New Transition-Metal-Based Deep Eutectic Solvents Using Single-Atom Ag Electrocatalyst. ACS OMEGA 2022; 7:14102-14112. [PMID: 35559187 PMCID: PMC9089364 DOI: 10.1021/acsomega.2c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Deep eutectic solvents (DESs) are efficient media for CO2 capture, and an electroreduction process using the deterministic surface of single-atom electrocatalysts is a facile way to screen gas absorption capacities of novel DESs. Using newly prepared transition-metal-based DESs indexed as TDESs, the interfacial mechanism, detection, quantification, and coordination modes of CO2 were determined for the first time. The CO2 has a minimum detection time of 300 s, whereas 500 s of continous ambient CO2 saturation provided ZnCl2/ethanolamine (EA) (1:4) and CoCl2/EA (1:4) TDESs with a maximum CO2 absorption capacity of 0.2259 and 0.1440 mmol/L, respectively. The results indicated that CO2 coordination modes of η1 (C) and η2 (O, O) with Zn in ZnCl2/EA (1:4) TDESs are conceivable. We found that the transition metals in TDESs form an interface at the compact layer of the electrocatalyst, while CO2 •-/CO2 reside in the diffuse layer. These findings are important because they provide reliable inferences about interfacial phenomena for facile screening of CO2 capture capacity of DESs or other green solvents.
Collapse
Affiliation(s)
- Ahmed Halilu
- Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala
Lumpur 50603, Malaysia
- University
of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala
Lumpur 50603, Malaysia
| | - Mohamed K. Hadj-Kali
- Chemical
Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohd Ali Hashim
- Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala
Lumpur 50603, Malaysia
- University
of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala
Lumpur 50603, Malaysia
| | - Emad M. Ali
- Chemical
Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Suresh K. Bhargava
- Centre
for Advanced Materials and Industrial Chemistry (CAMIC), School of
Science, RMIT University, Melbourne 3001, Australia
| |
Collapse
|
3
|
Li F, Mocci F, Zhang X, Ji X, Laaksonen A. Ionic liquids for CO2 electrochemical reduction. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Vasilyev DV, Dyson PJ. The Role of Organic Promoters in the Electroreduction of Carbon Dioxide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dmitry V. Vasilyev
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Abstract
Electroreduction of carbon dioxide (CO2) to value-added chemicals and fuels is a promising approach for sustainable energy conversion and storage. Many electrocatalysts have been designed for this purpose and studied extensively. The role of the electrolyte is particularly interesting and is pivotal for designing electrochemical devices by taking advantage of the synergy between electrolyte and catalyst. Recently, ionic liquids as electrolytes have received much attention due to their high CO2 adsorption capacity, high selectivity, and low energy consumption. In this review, we present a comprehensive overview of the recent progress in CO2 electroreduction in ionic liquid-based electrolytes, especially in the performance of different catalysts, the electrolyte effect, as well as mechanism studies to understand the reaction pathway. Perspectives on this interesting area are also discussed for the construction of novel electrochemical systems.
Collapse
Affiliation(s)
- Dexin Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xun S, Yu Z, He M, Wei Y, Li X, Zhang M, Zhu W, Li H. Supported phosphotungstic-based ionic liquid as an heterogeneous catalyst used in the extractive coupled catalytic oxidative desulfurization in diesel. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03833-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Vasilyev DV, Rudnev AV, Broekmann P, Dyson PJ. A General and Facile Approach for the Electrochemical Reduction of Carbon Dioxide Inspired by Deep Eutectic Solvents. CHEMSUSCHEM 2019; 12:1635-1639. [PMID: 30811822 DOI: 10.1002/cssc.201900579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Deep eutectic solvents (DESs) were applied to the electrochemical CO2 reduction reaction (CO2 RR). Choline-based DESs represent a non-toxic and inexpensive alternative to room-temperature ionic liquids (RTILs) as additives to the system or as electrolyte. Following the study on choline-based DESs this approach was generalized and simple and organic-soluble systems were devised based on the combination of organic chloride salts with ethylene glycol (EG), allowing the chlorides to be readily used as cocatalysts in the CO2 RR. This approach negates the need for anion exchange and, because the chloride salt is usually the least expensive one, substantially reduces the cost of the electrolyte and opens the way for high-throughput experimentation.
Collapse
Affiliation(s)
- Dmitry V Vasilyev
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexander V Rudnev
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii prospekt 31, 119991, Moscow, Russia
| | - Peter Broekmann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|