1
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Wang Q, Li J, Wang J, Hu H, Dong Y, O'Young DL, Hu D, Zhang X, Wei DQ, Zhu J. Biobased Biodegradable Copolyesters from 2,5-Thiophenedicarboxylic Acid: Effect of Aliphatic Diols on Barrier Properties and Degradation. Biomacromolecules 2023; 24:5884-5897. [PMID: 37956178 DOI: 10.1021/acs.biomac.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The demand for sustainable development has led to increasing attention in biobased polyesters due to their adjustable thermal and mechanical properties and biodegradability. In this study, we used a novel bioderived aromatic diacid, 2,5-thiophenedicarboxylic acid (TDCA) to synthesize a list of novel aromatic-aliphatic poly(alkylene adipate-co-thiophenedicarboxylate) (PAATh) copolyesters through a facile melt polycondensation method. PAAThs are random copolyesters with weight-average molecular weights of 58400 to 84200 g·mol-1 and intrinsic viscosities of 0.80 to 1.27 dL·g-1. All PAAThs exhibit sufficiently high thermal stability as well as the highest tensile strength of 6.2 MPa and the best gas barrier performances against CO2 and O2, 4.3- and 3.3-fold better than those of poly(butylene adipate-co-terephthalate) (PBAT). The biodegradability of PAAThs was fully evaluated through a degradation experiment and various experimental parameters, including residue weights, surface morphology, and molecular compositions. The state-of-the-art molecular dynamics (MD) simulations were applied to elucidate the different enzymatic degradation behaviors of PAAThs due to the effect of diols with different chain structures. The sterically hindered carbonyl carbon of the PHATh-enzyme complex was more susceptible to nucleophilic attack and exhibited a higher tendency to enter a prereaction state. This study has introduced a group of novel biobased copolyesters with their structure-property relationships investigated thoroughly, and the effect of diol components on the enzymatic degradation was revealed by computational analysis. These findings may lay the foundation for the development of promising substitutes for commercial biodegradable polyesters and shed light on their complicated degradation mechanisms.
Collapse
Affiliation(s)
- Qianfeng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yunxiao Dong
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Drow Lionel O'Young
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Di Hu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Xiaoqin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, People's Republic of China
- Peng Cheng Laboratory, Shenzhen 518055, People's Republic of China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
3
|
Wu X, De bruyn M, Trimmel G, Zangger K, Barta K. High-Performance Thermoplastics from a Unique Bicyclic Lignin-Derived Diol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2819-2829. [PMID: 36844751 PMCID: PMC9945171 DOI: 10.1021/acssuschemeng.2c05998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
| | - Mario De bruyn
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Gregor Trimmel
- Institute
for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Klaus Zangger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
4
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Yuan Z, Bals BD, Hegg EL, Hodge DB. Technoeconomic evaluation of recent process improvements in production of sugar and high-value lignin co-products via two-stage Cu-catalyzed alkaline-oxidative pretreatment. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:45. [PMID: 35509012 PMCID: PMC9069716 DOI: 10.1186/s13068-022-02139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A lignocellulose-to-biofuel biorefinery process that enables multiple product streams is recognized as a promising strategy to improve the economics of this biorefinery and to accelerate technology commercialization. We recently identified an innovative pretreatment technology that enables of the production of sugars at high yields while simultaneously generating a high-quality lignin stream that has been demonstrated as both a promising renewable polyol replacement for polyurethane applications and is highly susceptible to depolymerization into monomers. This technology comprises a two-stage pretreatment approach that includes an alkaline pre-extraction followed by a metal-catalyzed alkaline-oxidative pretreatment. Our recent work demonstrated that H2O2 and O2 act synergistically as co-oxidants during the alkaline-oxidative pretreatment and could significantly reduce the pretreatment chemical input while maintaining high sugar yields (~ 95% glucose and ~ 100% xylose of initial sugar composition), high lignin yields (~ 75% of initial lignin), and improvements in lignin usage. RESULTS This study considers the economic impact of these advances and provides strategies that could lead to additional economic improvements for future commercialization. The results of the technoeconomic analysis (TEA) demonstrated that adding O2 as a co-oxidant at 50 psig for the alkaline-oxidative pretreatment and reducing the raw material input reduced the minimum fuel selling price from $1.08/L to $0.85/L, assuming recoverable lignin is used as a polyol replacement. If additional lignin can be recovered and sold as more valuable monomers, the minimum fuel selling price (MFSP) can be further reduced to $0.73/L. CONCLUSIONS The present work demonstrated that high sugar and lignin yields combined with low raw material inputs and increasing the value of lignin could greatly increase the economic viability of a poplar-based biorefinery. Continued research on integrating sugar production with lignin valorization is thus warranted to confirm this economic potential as the technology matures.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Bryan D Bals
- Michigan Biotechnology Institute, 3815 Technology Boulevard, Lansing, MI, 48910, USA.
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824, USA.
| | - David B Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
6
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
7
|
Wang P, Zhang B. Sustainable aromatic polyesters with 1,5-disubstituted indole units. RSC Adv 2021; 11:16480-16489. [PMID: 35479171 PMCID: PMC9031847 DOI: 10.1039/d1ra02197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
This work aims to unravel the impact of disubstitution patterns on the physical properties and processing characteristics of indole-based aromatic polyesters. A series of hydroxyl-carboxylate (AB-type) monomers with 1,5-disubstituted indole and 3-6 methylene units was conveniently synthesized and used in bulk polycondensation to yield the corresponding polyesters with decent molecular weight. These new monomers and polyesters showed enhanced thermal stability compared to the previously reported monomers and polyesters with a 1,3-disubstituted indole structure. According to DSC results, these polyesters showed tunable glass transition temperatures (T g ∼57-80 °C), depending on the length of the aliphatic methylene units. DSC and WAXD measurements revealed that these polymers did not crystalize from melt, but the ones with 3 or 5 methylene units per repeating unit crystalized from solution. Finally, we demonstrated that the new polyesters with 1,5-disubstituted indole units could be crosslinked using sustainable aromatic aldehyde, which could further enhance their thermal properties.
Collapse
Affiliation(s)
- Ping Wang
- Centre of Analysis and Synthesis, Lund University P.O. Box 124 SE-22100 Lund Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Lund University P.O. Box 124 SE-22100 Lund Sweden
| |
Collapse
|
8
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
9
|
Trullemans L, Koelewijn SF, Scodeller I, Hendrickx T, Van Puyvelde P, Sels BF. A guide towards safe, functional and renewable BPA alternatives by rational molecular design: structure–property and structure–toxicity relationships. Polym Chem 2021. [DOI: 10.1039/d1py00909e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Putting the pieces together: a guide for rational molecular design of safe, functional and renewable BPA alternatives.
Collapse
Affiliation(s)
- L. Trullemans
- Dept. of Microbial and Molecular Systems (M2S), Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - S.-F. Koelewijn
- Dept. of Microbial and Molecular Systems (M2S), Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - I. Scodeller
- Dept. of Microbial and Molecular Systems (M2S), Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - T. Hendrickx
- Dept. of Microbial and Molecular Systems (M2S), Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - P. Van Puyvelde
- Dept. of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - B. F. Sels
- Dept. of Microbial and Molecular Systems (M2S), Centre for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Haddleton AJ, Bassett SP, Howdle SM. Comparison of polymeric particles synthesised using scCO2 as the reaction medium on the millilitre and litre scale. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
O’Dea RM, Willie JA, Epps TH. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Lett 2020; 9:476-493. [PMID: 35648496 DOI: 10.1021/acsmacrolett.0c00024] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sustainable polymers from lignocellulosic biomass have the potential to reduce the environmental impact of commercial plastics while also offering significant performance and cost benefits relative to petrochemical-derived macromolecules. However, most currently available biobased polymers are hampered by insufficient thermomechanical properties, low economic feasibility (e.g., high relative cost), and reduced scalability in comparison to petroleum-based incumbents. Future biobased materials must overcome these limitations to be competitive in the marketplace. Additionally, sustainability challenges at the beginning and end of the polymer lifecycle need to be addressed using green chemistry practices and improved end-of-life waste management strategies. This viewpoint provides an overview of recent developments that can mitigate many concerns with present materials and discusses key aspects of next-generation, biobased polymers derived from lignocellulosic biomass.
Collapse
Affiliation(s)
- Robert M. O’Dea
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jordan A. Willie
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Wong SS, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 2020; 49:5510-5560. [DOI: 10.1039/d0cs00134a] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides critical analysis on various downstream processes to convert lignin derived feedstock into fuels, chemicals and materials.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| | - Riyang Shu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
| | - Jiaguang Zhang
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane
- Lincoln
- UK
| | - Haichao Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
13
|
Arza CR, Wang P, Linares‐Pastén J, Zhang B. Synthesis, thermal, rheological characteristics, and enzymatic degradation of aliphatic polyesters with lignin‐based aromatic pendant groups. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carlos R. Arza
- Centre of Analysis and Synthesis, Department of ChemistryLund University P.O. Box 124, SE‐22100 Lund Sweden
| | - Ping Wang
- Centre of Analysis and Synthesis, Department of ChemistryLund University P.O. Box 124, SE‐22100 Lund Sweden
| | - Javier Linares‐Pastén
- Division of Biotechnology, Department of ChemistryLund University P.O.Box 124, 22100 Lund Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Department of ChemistryLund University P.O. Box 124, SE‐22100 Lund Sweden
| |
Collapse
|
14
|
Elangovan S, Afanasenko A, Haupenthal J, Sun Z, Liu Y, Hirsch AKH, Barta K. From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS CENTRAL SCIENCE 2019; 5:1707-1716. [PMID: 31660439 PMCID: PMC6813559 DOI: 10.1021/acscentsci.9b00781] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 05/21/2023]
Abstract
Inherently complex, lignin-derived aromatic monomers comprising valuable structural moieties present in many pharmaceuticals would serve as ideal substrates for the construction of biologically active molecules. Here, we describe a strategy that incorporates all intrinsic functional groups present in platform chemicals obtained by lignin depolymerization into value-added amines, using sustainable catalytic methods and benign solvents. Our strikingly efficient protocol provides access to libraries of aminoalkyl-phenol derivatives and seven-membered N-heterocycles directly from wood in two, respectively three, waste-free steps. Several molecules in these libraries have shown promising antibacterial or anticancer activities, emphasizing the advantage of this modular synthetic strategy and the potential for drug discovery. The sustainable catalytic pathways presented here can lead to significant benefits for the pharmaceutical industry where reduction of hazardous waste is a prime concern, and the described strategies that lead to high-value products from non-edible biomass waste streams also markedly increase the economic feasibility of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Saravanakumar Elangovan
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anastasiia Afanasenko
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jörg Haupenthal
- Department
of Drug Design and Optimization, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Zhuohua Sun
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yongzhuang Liu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Department
of Drug Design and Optimization, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Medicinal Chemistry, Saarland
University, Campus Building
E8.1, 66123 Saarbrücken, Germany
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- E-mail:
| |
Collapse
|
15
|
Peng Y, Nicastro KH, Epps TH, Wu C. Evaluation of Estrogenic Activity of Novel Bisphenol A Alternatives, Four Bioinspired Bisguaiacol F Specimens, by in Vitro Assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11775-11783. [PMID: 30284437 DOI: 10.1021/acs.jafc.8b03746] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alternatives to bisphenol A (BPA), such as lignin-inspired bisguaiacol F (BGF), are of interest for food contact materials due to increasing evidence of estrogenic activity (EA) and exposure-correlated harmful effects of BPA and its analogues. BGF has similar thermal and mechanical properties to BPA, but contains additional methoxy substituents that may significantly reduce its endocrine disruption potential. In this study, the EA of four BGF samples with different regioisomer ratios was quantified relative to 17β-estradiol at ten concentrations by using two in vitro assays: MCF-7 cell proliferation and VM7Luc4E2 transactivation (TA). The results suggest BGF mixtures with higher molar ratios of p, p'-BGF and o, p'-BGF regioisomers exhibited lower EA than BPA, while BGF samples containing higher molar ratios of m, p'-BGF had no detectable EA over a wide range of test concentrations. These findings suggest the potential of BGF as a viable alternative to BPA for use in more environmentally friendly materials.
Collapse
Affiliation(s)
- Ying Peng
- Department of Animal and Food Science , University of Delaware , Newark , Delaware 19716 , United States
| | - Kaleigh H Nicastro
- Department of Chemical & Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Thomas H Epps
- Department of Chemical & Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
- Department of Materials Science & Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Changqing Wu
- Department of Animal and Food Science , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
16
|
Goto T, Iwata T, Abe H. Synthesis and Characterization of Biobased Polyesters Containing Anthraquinones Derived from Gallic Acid. Biomacromolecules 2018; 20:318-325. [DOI: 10.1021/acs.biomac.8b01361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatsuya Goto
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Chi K, Catchmark JM. Sustainable Development of Polysaccharide Polyelectrolyte Complexes as Eco-Friendly Barrier Materials for Packaging Applications. GREEN POLYMER CHEMISTRY: NEW PRODUCTS, PROCESSES, AND APPLICATIONS 2018. [DOI: 10.1021/bk-2018-1310.ch008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kai Chi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 226 Agricultural Engineering Building, Shortlidge Road, University Park, Pennsylvania 16802, United States
| | - Jeffrey M. Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 226 Agricultural Engineering Building, Shortlidge Road, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Tsuchiya K, Numata K. Protease-Catalyzed Polymerization of Tripeptide Esters Containing Unnatural Amino Acids: α,α-Disubstituted and N-Alkylated Amino Acids. GREEN POLYMER CHEMISTRY: NEW PRODUCTS, PROCESSES, AND APPLICATIONS 2018. [DOI: 10.1021/bk-2018-1310.ch007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|