1
|
Hossain I, Kim KI, Husna A, Kang JH, Kim TH, Park HB. Metal-Coordinated, Dual-Crosslinked PIM Polymer Membranes for Upgraded CO 2 Separation: Aging and Plasticization Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407973. [PMID: 39487649 DOI: 10.1002/smll.202407973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 11/04/2024]
Abstract
The practical use of polymers of intrinsic microporosity (PIMs) in CO2 separation is often hindered by their moderate selectivity, performance instability over time, and pressure constraints. To address these limitations, a straightforward approach is presented to enhance the CO2 separation capability of PIM-1 by incorporating metal ions into uniformly hydrolyzed PIM-1 (cPIM). This dual linking strategy, achieved via ionic and coordination bonding of metal ions with the polymeric side chains including ─COOH and ─CONH2, restructures the polymer, disrupting hydrogen bonds between cPIM chains and creating active sites for CO2 via π-complexation. This modification enhances gas permeability while maintaining high selectivity. The optimized zinc-coordinated membrane achieves an impressive CO2 permeability of ≈2,500 Barrer with CO2/N2 and CO2/CH4 selectivities of 27.1 and 23, respectively, outperforming pristine cPIM (700 Barrer; CO2/N2 = 27; CO2/CH4 = 19). Notably, this performance surpasses the 2008 Robeson upper-bound limits for both gas pairs. Additionally, the metal-coordinated membranes exhibit remarkable long-term stability, resisting aging effects for up to 20 days and maintaining anti-plasticization properties at pressures up to 20 bar. These dual-crosslinked membranes demonstrate promising potential for mixed gas separation, indicating their suitability for real-world industrial applications.
Collapse
Affiliation(s)
- Iqubal Hossain
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kwan Il Kim
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Asmaul Husna
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jun Hyeok Kang
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Hyun Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, South Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Zhang TQ, Hao S, Zhao JK, Jia ZQ, Tan HW, Yang Y, Hou LA. Exfoliated MXene/poly-melamine-formaldehyde composite membranes for removal of heavy metals and organics from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132866. [PMID: 37918074 DOI: 10.1016/j.jhazmat.2023.132866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Heavy metal ions and organic pollutants discharged into various water bodies have caused serious water pollution, and the efficient removal of these contaminants remains a challenge. Here, we report a novel MXene/poly-melamine-formaldehyde (PMF) composite membrane, in which the PMF particles serve as spacers, and the -NH2 groups of PMF and the hydroxyl groups of MXene nanosheets have a synergistic effect on the adsorption of pollutants, and the crosslinking of glutaraldehyde inhibits the swelling of the composite membrane. The MXene/PMF composite membrane with 83.7% PMF particle loading displays a water permeability of 381.2 L m-2 h-1 bar-1 (405% that of MXene membrane) and excellent adsorption ability. In static adsorption, the removal rates of Zn2+, Pb2+, phenol, and crystal violet reach 96.2%, 91.7%, 99.1%, and 96.4% respectively, 20∼100% higher than those of MXene membranes. In dynamic adsorption, the breakthrough volumes of the membrane for 2 ppm p-nitrophenol solution and methyl blue solution reach 75 mL (about 8500 times membrane volume) and 350 mL (about 39800 times membrane volume), and the saturation volumes are 1500 mL and 5000 mL, respectively. After cyclic adsorption/desorption for four times, the removal rate of the membranes still maintains above 90%. This work provides an efficient composite membrane for removing pollutants from wastewater.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, PR China
| | - Shuang Hao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jun-Kai Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Zhi-Qian Jia
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Yu Yang
- School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Li-An Hou
- School of Environment, Beijing Normal University, Beijing 100875, PR China; High Tech. Inst. Beijing, Beijing 100000, PR China
| |
Collapse
|
3
|
Lee TH, Lee BK, Yoo SY, Lee H, Wu WN, Smith ZP, Park HB. PolyMOF nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO 2 separation. Nat Commun 2023; 14:8330. [PMID: 38097615 PMCID: PMC10721836 DOI: 10.1038/s41467-023-44027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Integrating different modification strategies into a single step to achieve the desired properties of metal-organic frameworks (MOFs) has been very synthetically challenging, especially in developing advanced MOF/polymer mixed matrix membranes (MMMs). Herein, we report a polymer-MOF (polyMOF) system constructed from a carboxylated polymer with intrinsic microporosity (cPIM-1) ligand. This intrinsically microporous ligand could coordinate with metals, leading to ~100 nm-sized polyMOF nanoparticles. Compared to control MOFs, these polyMOFs exhibit enhanced ultramicroporosity for efficient molecular sieving, and they have better dispersion properties in casting solutions to prepare MMMs. Ultimately, integrating coordination chemistries through the cPIM-1 and polymer-based functionality into porous materials results in polyMOF/PIM-1 MMMs that display excellent CO2 separation performance (surpassing the CO2/N2 and CO2/CH4 upper bounds). In addition to exploring the physicochemical and transport properties of this polyMOF system, scalability has been demonstrated by converting the developed MMM material into large-area (400 cm2) thin-film nanocomposite (TFN) membranes.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byung Kwan Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Yeon Yoo
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyunhee Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Xiao L, Lai Y, Zhao R, Song Q, Cai J, Yin X, Zhao Y, Hou L. Ionic Conjugated Polymers as Heterogeneous Catalysts for the Cycloaddition of Carbon Dioxide to Epoxides to Form Carbonates under Solvent- and Cocatalyst-Free Conditions. Chempluschem 2022; 87:e202200324. [PMID: 36420867 DOI: 10.1002/cplu.202200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
The generation of cyclic carbonates by the cycloaddition of CO2 with epoxides is attractive in the industry, by which CO2 is efficiently used as C1 source. Herein, a series of catalysts were developed to efficient mediate the cycloaddition of CO2 with epoxides to generate carbonates. The catalysts were easily synthesized via the amine-formaldehyde condensation of ethidium bromide with a variety of linkers. The newly prepared heterogeneous catalysts have high thermal stability and degradation temperatures. The surface of the catalysts is smooth and spherical in shape. The effect of temperature, pressure, reaction time and catalyst dosage on the cycloaddition of CO2 with epoxide were investigated. The results show that the catalyst with 1,3,5-tris(4-formylphenyl)benzene as the linker can achieve 97.4 % conversion efficiency at the conditions of 100 °C, reaction time of 12 h, and the reaction pressure of 1.2 MPa in a solvent-free environment. Notably, the polymers serve as homogeneous catalysts during the reaction (reaction temperature above Tg ) and can be separated and recovered easily as homogeneous catalysts at room temperature. In addition, the catalyst is not only suitable for a wide range of epoxide substrates, but also can be recycled many times. Furthermore, DFT calculations show that the coordination between the electrophilic center of the catalyst and the epoxide reduces the energy barrier, and the reaction mechanism is proposed based on the reaction kinetic studies and DFT calculations.
Collapse
Affiliation(s)
- Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Yiming Lai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rui Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Qianyu Song
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
5
|
Zhou T, Huang X, Ding N, Lin Z, Yao Y, Guo J. Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chem Soc Rev 2021; 51:237-267. [PMID: 34877581 DOI: 10.1039/d1cs00889g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Porous organic polymers (POPs), which feature high surface areas, robust skeletons, tunable pores, adjustable functionality and versatile applicability, have constituted a designable platform to develop advanced organic materials. Endowing polyelectrolytes with the distinct characteristics of POPs will attract mounting interest as the structural diversity of polyelectrolytes will bring the new hope of intriguing applications and potential benefits. In this review, the striking progress in ionized POPs (i-POPs) has been systematically summarized with regard to their synthetic strategies and applications. In the synthesis of i-POPs, we illustrate the representative ionic building blocks and charged functional groups capable of constructing the polyelectrolyte frameworks. The synthetic methods, including direct synthesis and post-modification, are detailed for the i-POPs with amorphous or crystalline structures, respectively. Subsequently, we outline the distinctive performances of i-POPs in adsorption, separation, catalysis, sensing, ion conduction and biomedical applications. The survey concerns the interplay between the surface chemistry, ionic interaction and pore confinement that cooperatively promote the performance of i-POPs. Finally, we conclude with the remaining challenges and promising opportunities for the on-going development of i-POPs.
Collapse
Affiliation(s)
- Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xingye Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ning Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zheng Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ying Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
6
|
Ma L, Meng J, Pan Y, Cheng YJ, Ji Q, Zuo X, Wang X, Zhu J, Xia Y. Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2003-2011. [PMID: 32036666 DOI: 10.1021/acs.langmuir.9b03497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silicon anodes have attracted much attention owing to their high theoretical capacity. Nonetheless, an inevitable and enormous volumetric expansion of silicon in the lithiated state restrained the development of the silicon anode for lithium-ion batteries. Fortunately, the utilization of the high-performance binder is a promising and effective way to overcome such obstacles. Herein, a polymer of intrinsic microporosity (PIM) is applied as the binder for the silicon anode, which is composed of a rigid polymer backbone, an intrinsic porous structure, and active carboxyl groups (PIM-COOH). Compared to the traditional binder, both the long-term stability and rate performance of the electrode using PIM-COOH as the binder are significantly improved. The mechanism responsible for the enhanced performance is investigated. The PIM-COOH binder provides stronger adhesion toward the current collector than the conventional binders. The unique rigid polymer backbone and porous structure of the PIM-COOH binder enable a good capability to withstand the volume change and external stress generated by the Si anode. The porous structure of the PIM-COOH binder enhances lithium-ion transportation compared to the SA binder, which improves rate performance of the silicon anode. This work provides a unique insight into design, synthesis, and utilization of the binders for lithium-ion batteries.
Collapse
Affiliation(s)
- Liujia Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
| | - Jianqiang Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | - Ying Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Qing Ji
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
- The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang Province, People's Republic of China
| | - Xiuxia Zuo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
| | - Xiaoyan Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, Zhejiang Province, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Zhang W, Ma F, Ma L, Zhou Y, Wang J. Imidazolium-Functionalized Ionic Hypercrosslinked Porous Polymers for Efficient Synthesis of Cyclic Carbonates from Simulated Flue Gas. CHEMSUSCHEM 2020; 13:341-350. [PMID: 31709710 DOI: 10.1002/cssc.201902952] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The rapid growth of CO2 emissions, especially from power plants, has led to the urgent need to directly capture and fix CO2 in the flue gas after simple purification rather than energy-intensive gas separation. Herein, imidazolium-functionalized ionic hypercrosslinked porous polymers (HCPs) bearing adjustable surface groups were straightforwardly synthesized through co-hypercrosslinking of benzylimidazole salts and crosslinker through Friedel-Crafts alkylation. Abundant microporosity and relatively high ionic moieties were obtainable in the ethyl-group-tethered ionic HCP, giving a remarkably selective CO2 capture performance with a CO2 uptake of 3.05 mmol g-1 and an ideal adsorbed solution theory (IAST) CO2 /N2 selectivity as high as 363 (273 K, 1 bar). This ionic polymer demonstrated high efficiency in the synthesis of cyclic carbonates from the coupling of various epoxides with the simulated flue gas (15 % CO2 and 85 % N2 ), giving high yields, large turnover numbers (up to 4800), and stable reusability under additive- and solvent-free conditions.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Fangpei Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Long Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
8
|
Zhang Y, Luo N, Xu J, Liu K, Zhang S, Xu Q, Huang R, Long Z, Tong M, Chen G. Metalated-bipyridine-based porous hybrid polymers with POSS-derived Si–OH groups for synergistic catalytic CO2 fixation. Dalton Trans 2020; 49:11300-11309. [DOI: 10.1039/d0dt01667e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnBr2 metalated-bipyridine porous hybrid polymers with POSS-derived Si–OH as “all-in-one” heterogeneous catalysts for synergistic catalytic CO2 fixation.
Collapse
|