1
|
Karapanou MI, Malliotaki D, Stratakis M. Au nanoparticle-catalyzed double hydrosilylation of nitriles by diethylsilane. Org Biomol Chem 2024; 22:5346-5352. [PMID: 38861320 DOI: 10.1039/d4ob00534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We present the first example of Au-catalyzed reduction of nitriles into primary amines. In contrast to monohydrosilanes which are completely unreactive, diethylsilane (a dihydrosilane) is capable of reducing aryl or alkyl nitriles into primary amines under catalysis by Au nanoparticles supported on TiO2, via a smooth double hydrosilylation pathway. The produced labile N-disilylamines are readily deprotected by HCl in Et2O to form the hydrochloric salts of the corresponding amines in very good to excellent yields. The catalyst is recyclable and reusable at least in 5 consecutive runs.
Collapse
Affiliation(s)
| | - Dimitra Malliotaki
- Department of Chemistry, University of Crete, Voutes, 71003, Heraklion, Greece.
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003, Heraklion, Greece.
| |
Collapse
|
2
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
3
|
Kwon H, Barad HN, Silva Olaya AR, Alarcón-Correa M, Hahn K, Richter G, Wittstock G, Fischer P. Dry Synthesis of Pure and Ultrathin Nanoporous Metallic Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5620-5627. [PMID: 36690332 PMCID: PMC9906609 DOI: 10.1021/acsami.2c19584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Nanoporous metals possess unique properties attributed to their high surface area and interconnected nanoscale ligaments. They are mostly fabricated by wet synthetic methods that are not universal to various metals and not free from impurities due to solution-based etching processes. Here, we demonstrate that the plasma treatment of metal nanoparticles formed by physical vapor deposition is a general route to form such films with many metals including the non-noble ones. The resultant nanoporous metallic films are free of impurities and possess highly curved ligaments and nanopores. The metal films are ultrathin, yet remarkably robust and very well connected, and thus are highly promising for various applications such as transparent conducting electrodes.
Collapse
Affiliation(s)
- Hyunah Kwon
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Hannah-Noa Barad
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002 Israel
| | - Alex Ricardo Silva Olaya
- School
of Mathematics and Science, Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Mariana Alarcón-Correa
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kersten Hahn
- Max
Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Gunther Richter
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Gunther Wittstock
- School
of Mathematics and Science, Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Peer Fischer
- Institute
for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Zachilas I, Kidonakis M, Karapanou MI, Stratakis M. Substitution-Dependent Ring-Opening Hydrosilylation or Dehydrogenative Hydrosilylation of Cyclopropyl Aldehydes and Ketones Catalyzed by Au Nanoparticles. J Org Chem 2022; 87:15914-15924. [DOI: 10.1021/acs.joc.2c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ioannis Zachilas
- Department of Chemistry, University of Crete,
Voutes, Heraklion 71003, Greece
| | - Marios Kidonakis
- Department of Chemistry, University of Crete,
Voutes, Heraklion 71003, Greece
| | | | - Manolis Stratakis
- Department of Chemistry, University of Crete,
Voutes, Heraklion 71003, Greece
| |
Collapse
|
5
|
Louka A, Stratakis M. Deoxygenation of Epoxides with Hexamethyldigermane Catalyzed by Au Nanoparticles on TiO
2. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastasia Louka
- Department of Chemistry University of Crete Voutes 71003 Heraklion Greece
| | - Manolis Stratakis
- Department of Chemistry University of Crete Voutes 71003 Heraklion Greece
| |
Collapse
|
6
|
Wang J, Zhou C, Gao Z, Feng X, Yamamoto Y, Bao M. Unsupported Nanoporous Palladium Catalyst for Highly Selective Hydrogenation of Carbon Dioxide and Sodium Bicarbonate into Formate. ChemCatChem 2021. [DOI: 10.1002/cctc.202100148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jixiao Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - ChuanCheng Zhou
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Zhanming Gao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- Research Organization of Science and Technology Ritsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- Department School of Chemical Engineering Dalian University of Technology Panjin 124221 P. R. China
| |
Collapse
|
7
|
Kidonakis M, Stratakis M. Reduction of the Diazo Functionality of α-Diazocarbonyl Compounds into a Methylene Group by NH 3BH 3 or NaBH 4 Catalyzed by Au Nanoparticles. NANOMATERIALS 2021; 11:nano11010248. [PMID: 33477732 PMCID: PMC7832297 DOI: 10.3390/nano11010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Supported Au nanoparticles on TiO2 (1 mol%) are capable of catalyzing the reduction of the carbene-like diazo functionality of α-diazocarbonyl compounds into a methylene group [C=(N2) → CH2] by NH3BH3 or NaBH4 in methanol as solvent. The Au-catalyzed reduction that occurs within a few minutes at room temperature formally requires one hydride equivalent (B-H) and one proton that originates from the protic solvent. This pathway is in contrast to the Pt/CeO2-catalyzed reaction of α-diazocarbonyl compounds with NH3BH3 in methanol, which leads to the corresponding hydrazones instead. Under our stoichiometric Au-catalyzed reaction conditions, the ketone-type carbonyls remain intact, which is in contrast to the uncatalyzed conditions where they are selectively reduced by the boron hydride reagent. It is proposed that the transformation occurs via the formation of chemisorbed carbenes on Au nanoparticles, having proximally activated the boron hydride reagent. This protocol is the first general example of catalytic transfer hydrogenation of the carbene-like α -ketodiazo functionality.
Collapse
|
8
|
Mayyas M, Mousavi M, Ghasemian MB, Abbasi R, Li H, Christoe MJ, Han J, Wang Y, Zhang C, Rahim MA, Tang J, Yang J, Esrafilzadeh D, Jalili R, Allioux FM, O'Mullane AP, Kalantar-Zadeh K. Pulsing Liquid Alloys for Nanomaterials Synthesis. ACS NANO 2020; 14:14070-14079. [PMID: 32916049 DOI: 10.1021/acsnano.0c06724] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although it remains unexplored, the direct synthesis and expulsion of metals from alloys can offer many opportunities. Here, such a phenomenon is realized electrochemically by applying a polarizing voltage signal to liquid alloys. The signal induces an abrupt interfacial perturbation at the Ga-based liquid alloy surface and results in an unrestrained discharge of minority elements, such as Sn, In, and Zn, from the liquid alloy. We show that this can occur by either changing the surface tension or inducing a reversible redox reaction at the alloys' interface. The expelled metals exhibit nanosized and porous morphologies, and depending on the cell electrochemistry, these metals can be passivated with oxide layers or fully oxidized into distinct nanostructures. The proposed concept of metal expulsion from liquid alloys can be extended to a wide variety of molten metals for producing metallic and metallic compound nanostructures for advanced applications.
Collapse
Affiliation(s)
- Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Roozbeh Abbasi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Hongzhe Li
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Michael J Christoe
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jialuo Han
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2031, Australia
| | - Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Louka A, Kidonakis M, Saridakis I, Zantioti-Chatzouda EM, Stratakis M. Diethylsilane as a Powerful Reagent in Au Nanoparticle-Catalyzed Reductive Transformations. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anastasia Louka
- Department of Chemistry; University of Crete; Voutes 71003 Heraklion Greece
| | - Marios Kidonakis
- Department of Chemistry; University of Crete; Voutes 71003 Heraklion Greece
| | - Iakovos Saridakis
- Department of Chemistry; University of Crete; Voutes 71003 Heraklion Greece
| | | | - Manolis Stratakis
- Department of Chemistry; University of Crete; Voutes 71003 Heraklion Greece
| |
Collapse
|
10
|
Zhao Y, Feng X, Li Y, Zhang W, Yamamoto Y, Bao M. Effect of Nanoporous Structure on the Catalytic Activity of Nanoporous Palladium for Hydrogenation of Nitro Compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202001550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuhui Zhao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
| | - Xiujuan Feng
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
| | - Yanhui Li
- School of Materials Science and EngineeringDalian University of Technology Dalian 116023 China
| | - Wei Zhang
- School of Materials Science and EngineeringDalian University of Technology Dalian 116023 China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- Research Organization of Science and TechnologyRitsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 China
- School of Petroleum and Chemical EngineeringDalian University of Technology Panjin 124221 China
| |
Collapse
|
11
|
Gao Y, Ding Y. Nanoporous Metals for Heterogeneous Catalysis: Following the Success of Raney Nickel. Chemistry 2020; 26:8845-8856. [DOI: 10.1002/chem.202000471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Yanxiu Gao
- Tianjin Key Laboratory of Advanced Functional Porous MaterialsInstitute for New Energy Materials and Low-Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of Technology Tianjin 300384 P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous MaterialsInstitute for New Energy Materials and Low-Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of Technology Tianjin 300384 P. R. China
| |
Collapse
|
12
|
Xiao Z, Yang H, Yin S, Zhang J, Yang Z, Yuan K, Ding Y. Electrochemical reduction of functionalized carbonyl compounds: enhanced reactivity over tailored nanoporous gold. NANOSCALE 2020; 12:4314-4319. [PMID: 32031187 DOI: 10.1039/c9nr10564f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of the pore size of nanoporous gold on electrochemical reduction of functionalized carbonyl compounds was investigated. NPG with a pore size of ∼30 nm significantly enhanced the reactivity with high chemo-selectivity at a low-potential. Typically, p-nitrobenzaldehyde reduction demonstrates a high turnover frequency (TOF) up to 232 000 h-1.
Collapse
Affiliation(s)
- Zihui Xiao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| | - Hui Yang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| | - Shuai Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| | - Jian Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| | - Zhenhua Yang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| | - Kedong Yuan
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin 300384, China.
| |
Collapse
|
13
|
Yamamoto Y. Development of Nanoporous Metal Skeleton Catalysts for Organic Synthesis. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Kidonakis M, Fragkiadakis M, Stratakis M. β-Borylation of conjugated carbonyl compounds with silylborane or bis(pinacolato)diboron catalyzed by Au nanoparticles. Org Biomol Chem 2020; 18:8921-8927. [DOI: 10.1039/d0ob01806f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Borylation occurs in the Au/TiO2-catalysed reaction between the silylborane Me2PhSiBpin and conjugated carbonyl compounds, in contrast to the so far known analogous reaction catalysed by other metals, where β-silylation occurs instead.
Collapse
|
15
|
Kotzabasaki V, Kidonakis M, Vasilikogiannaki E, Stratakis M. Au Nanoparticle-Catalyzed Silaboration of Aryl-Substituted Cyclopropyl Aldehydes Forming Rearranged β-Boronate Silyl Enol Ethers. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Marios Kidonakis
- Department of Chemistry; University of Crete; Voutes 71003 Iraklion Greece
| | | | - Manolis Stratakis
- Department of Chemistry; University of Crete; Voutes 71003 Iraklion Greece
| |
Collapse
|
16
|
Zhao Y, Zhang S, Yamamoto Y, Bao M, Jin T, Terada M. Heterogeneous Catalytic Reduction of Tertiary Amides with Hydrosilanes Using Unsupported Nanoporous Gold Catalyst. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuhui Zhao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 People's Republic of China
| | - Sheng Zhang
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 People's Republic of China
- Department of Chemistry, Graduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 People's Republic of China
- Department of Chemistry, Graduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Ming Bao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 People's Republic of China
| | - Tienan Jin
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116023 People's Republic of China
- Department of Chemistry, Graduate School of ScienceTohoku University Sendai 980-8578 Japan
- Research and Analytical Center for Giant Molecules, Graduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of ScienceTohoku University Sendai 980-8578 Japan
| |
Collapse
|