1
|
Farahmandazad H, Asperti S, Kortlever R, Goetheer E, de Jong W. Effect of Halide Anions on Electrochemical CO 2 Reduction in Non-Aqueous Choline Solutions using Ag and Au Electrodes. ChemistryOpen 2024; 13:e202400166. [PMID: 39254258 PMCID: PMC11564868 DOI: 10.1002/open.202400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (Ag) and gold (Au) electrodes in a compact H-cell. Our findings reveal that chloride effectively suppresses the hydrogen evolution reaction and enhances the selectivity of carbon monoxide production on both Ag and Au electrodes, with relatively high selectivity values of 84 % and 62 %, respectively. Additionally, the effect of varying ethylene glycol content in the choline chloride-containing electrolyte (ChCl : EG 1 : X, X=2, 3, 4) was investigated to improve the current density during CO2RR on the Ag electrode. We observed that a mole ratio of 1 : 4 exhibited the highest current density with a comparable faradaic efficiency toward CO. Notably, an evident surface reconstruction process took place on the Ag surface in the presence of Cl- ions, whereas on Au, this phenomenon was less pronounced. Overall, this study provides new insights into anion-induced surface restructuring of Ag and Au electrodes during CO2RR, and its consequences on the reduction performance on such surfaces in non-aqueous electrolytes.
Collapse
Affiliation(s)
- Hengameh Farahmandazad
- Section of Large Scale Energy StorageProcess & Energy DepartmentFaculty of Mechanical EngineeringDelft University of TechnologyLeeghwaterstraat 392628 CBDelftThe Netherlands
| | - Simone Asperti
- Section of Large Scale Energy StorageProcess & Energy DepartmentFaculty of Mechanical EngineeringDelft University of TechnologyLeeghwaterstraat 392628 CBDelftThe Netherlands
| | - Ruud Kortlever
- Section of Large Scale Energy StorageProcess & Energy DepartmentFaculty of Mechanical EngineeringDelft University of TechnologyLeeghwaterstraat 392628 CBDelftThe Netherlands
| | - Earl Goetheer
- Section of Large Scale Energy StorageProcess & Energy DepartmentFaculty of Mechanical EngineeringDelft University of TechnologyLeeghwaterstraat 392628 CBDelftThe Netherlands
| | - Wiebren de Jong
- Section of Large Scale Energy StorageProcess & Energy DepartmentFaculty of Mechanical EngineeringDelft University of TechnologyLeeghwaterstraat 392628 CBDelftThe Netherlands
| |
Collapse
|
2
|
Halilu A, Hadj-Kali MK, Hizaddin HF, Hashim MA, Ali EM, Bhargava S. Reaching machine learning leverage to advance performance of electrocatalytic CO 2 conversion in non-aqueous deep eutectic electrolytes. Sci Rep 2024; 14:24757. [PMID: 39433823 PMCID: PMC11494191 DOI: 10.1038/s41598-024-74893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Deep eutectic electrolytes (DEEs) show promise for future electrochemical systems due to their adjustable buffer capacities. This study utilizes machine learning algorithms to analyse the carbon dioxide reduction reaction (CO2RR) in DEEs with a buffer capacity of approximately 10.21 mol/pH. The objective is to minimize undesired hydrogen evolution reactions (HER) and render CO2RR dominant in a membrane cell. The CO2RR process was found to be non-adiabatic, as the time of nuclear motion for CO32- in K2CO3 product, through CO2●- trapping, is 0.368 femtoseconds shorter than the 1.856 × 10-3s charge transfer relaxation time. Microkinetic analysis reveals that the rate of CO2RR to CO2●- is 2.14 × 103 mol/cm2/s2 with a rate constant of 2.1 × 1010 cm/s. Our findings demonstrate that ensemble and k-Nearest Neighbours algorithms learn the CO2RR dataset, achieving a prediction accuracy of over 99%. The models were verified visually and quantitatively by overlaying predicted and experimental dataset. Diagnostic and SHAP analyses highlighted the gradient boost ensemble algorithm, predicting asymptotic current densities of -4.114 mA/cm2 or -13.340 mA/cm2, with high turnover frequencies (TOF) of 3.79 × 1010 h-1 or 12.30 × 1010 h-1 for CO2●- or K2CO3 generation on silver electrodes, respectively. These results consider both accuracy and robustness against overfitting, providing an opportunity to optimize future non-aqueous electrolytes for convenient TOF measurements at industrially relevant current densities.
Collapse
Affiliation(s)
- Ahmed Halilu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia.
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohamed Kamel Hadj-Kali
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia.
| | - Hanee Farzana Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia
- Sustainable Process Engineering Centre (SPEC), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Emad M Ali
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001, Australia.
| |
Collapse
|
3
|
Guo Z, Zhang Z, Huang Y, Lin T, Guo Y, He LN, Liu T. CO 2 Valorization in Deep Eutectic Solvents. CHEMSUSCHEM 2024; 17:e202400197. [PMID: 38629214 DOI: 10.1002/cssc.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Indexed: 05/18/2024]
Abstract
The deep eutectic solvent (DES) has emerged in recent years as a valuable medium for converting CO2 into valuable chemicals because of its easy availability, stability, and safety, and its capability to dissolve carbon dioxide. CO2 valorization in DES has evolved rapidly over the past 20 years. As well as being used as solvents for acid/base-promoted CO2 conversion for the production of cyclic carbonates and carbamates, DESs can be used as reaction media for electrochemical CO2 reduction for formic acid and CO. Among these products, cyclic carbonates can be used as solvents and electrolytes, carbamate derivatives include the core structure of many herbicides and pesticides, and formic acid and carbon monoxide, the C1 electrochemical products, are essential raw materials in the chemical industries. An overview of the application of DESs for CO2 valorization in recent years is presented in this review, followed by a compilation and comparison of product types and reaction mechanisms within the different types of DESs, and an outlook on how CO2 valorization will be developed in the future.
Collapse
Affiliation(s)
- Zhenbo Guo
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Zhicheng Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Yuchen Huang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Tianxing Lin
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Yixin Guo
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Liang-Nian He
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Tianfei Liu
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Wang H, Kang X, Han B. Electrocatalysis in deep eutectic solvents: from fundamental properties to applications. Chem Sci 2024; 15:9949-9976. [PMID: 38966383 PMCID: PMC11220594 DOI: 10.1039/d4sc02318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
6
|
Wang Y, Feric TG, Tang J, Fang C, Hamilton ST, Halat DM, Wu B, Celik H, Rim G, DuBridge T, Oshiro J, Wang R, Park AHA, Reimer JA. Carbon capture in polymer-based electrolytes. SCIENCE ADVANCES 2024; 10:eadk2350. [PMID: 38640239 PMCID: PMC11029803 DOI: 10.1126/sciadv.adk2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Tony G. Feric
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
| | - Jing Tang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chao Fang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sara T. Hamilton
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - David M. Halat
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bing Wu
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Hasan Celik
- College of Chemistry Nuclear Magnetic Resonance Facility (CoC-NMR), University of California, Berkeley, CA 94720, USA
| | - Guanhe Rim
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Tara DuBridge
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Julianne Oshiro
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ah-Hyung Alissa Park
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Kumar De S, Won DI, Kim J, Kim DH. Integrated CO 2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 2023; 52:5744-5802. [PMID: 37539619 DOI: 10.1039/d2cs00512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Coupling post-combustion CO2 capture with electrochemical utilization (CCU) is a quantum leap in renewable energy science since it eliminates the cost and energy involved in the transport and storage of CO2. However, the major challenges involved in industrial scale implementation are selecting an appropriate solvent/electrolyte for CO2 capture, modeling an appropriate infrastructure by coupling an electrolyser with a CO2 point source and a separator to isolate CO2 reduction reaction (CO2RR) products, and finally selection of an appropriate electrocatalyst. In this review, we highlight the major difficulties with detailed mechanistic interpretation in each step, to find out the underpinning mechanism involved in the integration of electrochemical CCU to achieve higher-value products. In the past decades, most of the studies dealt with individual parts of the integration process, i.e., either selecting a solvent for CO2 capture, designing an electrocatalyst, or choosing an ideal electrolyte. In this context, it is important to note that solvents such as monoethanolamine, bicarbonate, and ionic liquids are often used as electrolytes in CO2 capture media. Therefore, it is essential to fabricate a cost-effective electrolyser that should function as a reversible binder with CO2 and an electron pool capable of recovering the solvent to electrolyte reversibly. For example, reversible ionic liquids, which are non-ionic in their normal forms, but produce ionic forms after CO2 capture, can be further reverted back to their original non-ionic forms after CO2 release with almost 100% efficiency through the chemical or thermal modulations. This review also sheds light on a focused techno-economic evolution for converting the electrochemically integrated CCU process from a pilot-scale project to industrial-scale implementation. In brief, this review article will summarize a state-of-the-art argumentation of challenges and outcomes over the different segments involved in electrochemically integrated CCU to stimulate urgent progress in the field.
Collapse
Affiliation(s)
- Sandip Kumar De
- Department of Chemistry, UPL University of Sustainable Technology, 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
9
|
Imteyaz S, Suresh CM, Kausar T, Ingole PP. Carbon dioxide capture and its electrochemical reduction study in deep eutectic solvent (DES) via experimental and molecular simulation approaches. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Halilu A, Hadj-Kali MK, Hashim MA, Yusoff R, Aroua MK. Bifunctional Ionic Deep Eutectic Electrolytes for CO 2 Electroreduction. ACS OMEGA 2022; 7:37764-37773. [PMID: 36312381 PMCID: PMC9608392 DOI: 10.1021/acsomega.2c04739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
CO2 is a low-cost monomer capable of promoting industrially scalable carboxylation reactions. Sustainable activation of CO2 through electroreduction process (ECO2R) can be achieved in stable electrolyte media. This study synthesized and characterized novel diethyl ammonium chloride-diethanolamine bifunctional ionic deep eutectic electrolyte (DEACl-DEA), using diethanolamine (DEA) as hydrogen bond donors (HBD) and diethyl ammonium chloride (DEACl) as hydrogen bond acceptors (HBA). The DEACl-DEA has -69.78 °C deep eutectic point and cathodic electrochemical stability limit of -1.7 V versus Ag/AgCl. In the DEACl-DEA (1:3) electrolyte, electroreduction of CO2 to CO2 •- was achieved at -1.5 V versus Ag/AgCl, recording a faradaic efficiency (FE) of 94%. After 350 s of continuous CO2 sparging, an asymptotic current response is reached, and DEACl-DEA (1:3) has an ambient CO2 capture capacity of 52.71 mol/L. However, DEACl-DEA has a low faradaic efficiency <94% and behaves like a regular amine during the CO2 electroreduction process when mole ratios of HBA-HBD are greater than 1:3. The electrochemical impedance spectroscopy (EIS) and COSMO-RS analyses confirmed that the bifunctional CO2 sorption by the DEACl-DEA (1:3) electrolyte promote the ECO2R process. According to the EIS, high CO2 coverage on the DEACl-DEA/Ag-electrode surface induces an electrochemical double layer capacitance (EDCL) of 3.15 × 10-9 F, which is lower than the 8.76 × 10-9 F for the ordinary DEACl-DEA/Ag-electrode. COSMO-RS analysis shows that the decrease in EDCL arises due to the interaction of CO2 non-polar sites (0.314, 0.097, and 0.779 e/nm2) with that of DEACl (0.013, 0.567 e/nm2) and DEA (0.115, 0.396 e/nm2). These results establish for the first time that a higher cathodic limit beyond the typical CO2 reduction potential is a criterion for using any deep eutectic electrolytes for sustainable CO2 electroreduction process.
Collapse
Affiliation(s)
- Ahmed Halilu
- Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala
Lumpur50603, Malaysia
- University
of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur50603, Malaysia
| | - Mohamed Kamel Hadj-Kali
- Chemical
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Mohd Ali Hashim
- Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala
Lumpur50603, Malaysia
- University
of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur50603, Malaysia
| | - Rozita Yusoff
- Department
of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala
Lumpur50603, Malaysia
| | - Mohamed Kheireddine Aroua
- Centre
for Carbon Dioxide Capture and Utilisation (CCDCU), School of Science
and Technology, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, Petaling Jaya47500, Malaysia
- School
of Engineering, Lancaster University, LancasterLA1 4YW, U.K.
- Sunway Materials
Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya47500, Malaysia
| |
Collapse
|
11
|
Hamilton ST, Feric TG, Gładysiak A, Cantillo NM, Zawodzinski TA, Park AHA. Mechanistic Study of Controlled Zinc Electrodeposition Behaviors Facilitated by Nanoscale Electrolyte Additives at the Electrode Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22016-22029. [PMID: 35522595 DOI: 10.1021/acsami.1c23781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle organic hybrid materials (NOHMs) are liquid-like materials composed of an inorganic core to which a polymeric canopy is ionically tethered. NOHMs have unique properties including negligible vapor pressure, high oxidative thermal stability, and the ability to bind to reactive species of interest due to the tunability of their polymeric canopy. This makes them promising multifunctional materials for a wide range of energy and environmental technologies, including electrolyte additives for electrochemical energy storage (e.g., flow batteries) and the electrochemical conversion of CO2 to chemicals and fuels. Due to their unique transport behaviors in fluid systems, an understanding of the near-electrode surface behavior of NOHMs in electrolyte solutions and their effect on electrochemical reactions is still lacking. In this work, the complexation of zinc (Zn) by NOHMs with an ionically tethered polyetheramine canopy (HPE) (NOHM-I-HPE) was studied using attenuated total reflectance Fourier transform infrared and Carbon-13 nuclear magnetic resonance spectroscopy. Additionally, various electrochemical techniques were employed to discern the role of NOHM-I-HPE during zinc electrodeposition, and the results were compared to those of the electrochemical system containing untethered HPE polymers. Our findings confirmed that NOHM-I-HPE and HPE reversibly complex zinc in the aqueous electrolyte. NOHM-I-HPE and HPE were found to block some of the electrode active sites, reducing the overall current density during electrodeposition, while facilitating the formation of smooth zinc deposits, as revealed by surface imaging and diffraction techniques. Observed variations in the current density responses and the degree of passivation created by the NOHM-I-HPE and HPE adsorbed on the electrode surface revealed that their different packing behaviors at the electrode-electrolyte interface influence the zinc deposition mechanism. The presence of the nanoparticle and ordering offered by the NOHMs as well as the structured conformation of the polymeric canopy allowed the formation of void spaces and free volumes for enhanced transport behaviors. These findings provided insights into how structured electrolyte additives such as NOHMs can allow for advancements in electrolyte design for controlled deposition of metal species from energy-dense electrolytes or for other electrochemical reactions.
Collapse
Affiliation(s)
- Sara T Hamilton
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| | - Tony G Feric
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| | - Andrzej Gładysiak
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| | - Nelly M Cantillo
- Department of Chemical & Biomolecular Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Thomas A Zawodzinski
- Department of Chemical & Biomolecular Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Dawass N, Langeveld J, Ramdin M, Pérez-Gallent E, Villanueva AA, Giling EJM, Langerak J, van den Broeke LJP, Vlugt TJH, Moultos OA. Solubilities and Transport Properties of CO 2, Oxalic Acid, and Formic Acid in Mixed Solvents Composed of Deep Eutectic Solvents, Methanol, and Propylene Carbonate. J Phys Chem B 2022; 126:3572-3584. [PMID: 35507866 PMCID: PMC9125562 DOI: 10.1021/acs.jpcb.2c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recently, deep eutectic
solvents (DES) have been considered as
possible electrolytes for the electrochemical reduction of CO2 to value-added products such as formic and oxalic acids.
The applicability of pure DES as electrolytes is hindered by high
viscosities. Mixtures of DES with organic solvents can be a promising
way of designing superior electrolytes by exploiting the advantages
of each solvent type. In this study, densities, viscosities, diffusivities,
and ionic conductivities of mixed solvents comprising DES (i.e., reline
and ethaline), methanol, and propylene carbonate were computed using
molecular simulations. To provide a quantitative assessment of the
affinity and mass transport of CO2 and oxalic and formic
acids in the mixed solvents, the solubilities and self-diffusivities
of these solutes were also computed. Our results show that the addition
of DES to the organic solvents enhances the solubilities of oxalic
and formic acids, while the solubility of CO2 in the ethaline-containing
mixtures are in the same order of magnitude with the respective pure
organic components. A monotonic increase in the densities and viscosities
of the mixed solvents is observed as the mole fraction of DES in the
mixture increases, with the exception of the density of ethaline-propylene
carbonate which shows the opposite behavior due to the high viscosity
of the pure organic component. The self-diffusivities of all species
in the mixtures significantly decrease as the mole fraction of DES
approaches unity. Similarly, the self-diffusivities of the dissolved
CO2 and the oxalic and formic acids also decrease by at
least 1 order of magnitude as the composition of the mixture shifts
from the pure organic component to pure DES. The computed ionic conductivities
of all mixed solvents show a maximum value for mole fractions of DES
in the range from 0.2 to 0.6 and decrease as more DES is added to
the mixtures. Since for most mixtures studied here no prior experimental
measurements exist, our findings can serve as a first data set based
on which further investigation of DES-containing electrolyte solutions
can be performed for the electrochemical reduction of CO2 to useful chemicals.
Collapse
Affiliation(s)
- Noura Dawass
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Jilles Langeveld
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Elena Pérez-Gallent
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Angel A Villanueva
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Erwin J M Giling
- Department of Sustainable Process and Energy Systems, TNO, Delft, Zuid-Holland 2628CA, The Netherlands
| | - Jort Langerak
- Research and Development Department, DMT Environmental Technology, Yndustrywei 3, 8501SN Joure, The Netherlands
| | - Leo J P van den Broeke
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
13
|
Hamilton ST, Feric TG, Bhattacharyya S, Cantillo NM, Greenbaum SG, Zawodzinski TA, Park AHA. Nanoscale Hybrid Electrolytes with Viscosity Controlled Using Ionic Stimulus for Electrochemical Energy Conversion and Storage. JACS AU 2022; 2:590-600. [PMID: 35373208 PMCID: PMC8970003 DOI: 10.1021/jacsau.1c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 06/14/2023]
Abstract
As renewable energy is rapidly integrated into the grid, the challenge has become storing intermittent renewable electricity. Technologies including flow batteries and CO2 conversion to dense energy carriers are promising storage options for renewable electricity. To achieve this technological advancement, the development of next generation electrolyte materials that can increase the energy density of flow batteries and combine CO2 capture and conversion is desired. Liquid-like nanoparticle organic hybrid materials (NOHMs) composed of an inorganic core with a tethered polymeric canopy (e.g., polyetheramine (HPE)) have a capability to bind chemical species of interest including CO2 and redox-active species. In this study, the unique response of NOHM-I-HPE-based electrolytes to salt addition was investigated, including the effects on solution viscosity and structural configurations of the polymeric canopy, impacting transport behaviors. The addition of 0.1 M NaCl drastically lowered the viscosity of NOHM-based electrolytes by up to 90%, reduced the hydrodynamic diameter of NOHM-I-HPE, and increased its self-diffusion coefficient, while the ionic strength did not alter the behaviors of untethered HPE. This study is the first to fundamentally discern the changes in polymer configurations of NOHMs induced by salt addition and provides a comprehensive understanding of the effect of ionic stimulus on their bulk transport properties and local dynamics. These insights could be ultimately employed to tailor transport properties for a range of electrochemical applications.
Collapse
Affiliation(s)
- Sara T. Hamilton
- Department
of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Lenfest
Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| | - Tony G. Feric
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Lenfest
Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| | - Sahana Bhattacharyya
- Hunter
College Physics Department, City University
of New York, New York, New York 10065, United
States
| | - Nelly M. Cantillo
- Department
of Chemical & Biomolecular Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Steven G. Greenbaum
- Hunter
College Physics Department, City University
of New York, New York, New York 10065, United
States
| | - Thomas A. Zawodzinski
- Department
of Chemical & Biomolecular Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ah-Hyung Alissa Park
- Department
of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Lenfest
Center for Sustainable Energy, The Earth Institute, Columbia University, New York, New York 10027, United States
| |
Collapse
|
14
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
15
|
Deng B, Huang M, Zhao X, Mou S, Dong F. Interfacial Electrolyte Effects on Electrocatalytic CO 2 Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| | - Ming Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Xiaoli Zhao
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Shiyong Mou
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Fan Dong
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| |
Collapse
|
16
|
Separation of ethanol azeotropic mixture using deep eutectic solvents in liquid- liquid extraction process. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Maniam KK, Paul S. Ionic Liquids and Deep Eutectic Solvents for CO 2 Conversion Technologies-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4519. [PMID: 34443042 PMCID: PMC8399058 DOI: 10.3390/ma14164519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have a wide range of potential uses in renewable energy, including CO2 capture and electrochemical conversion. With the goal of providing a critical overview of the progression, new challenges, and prospects of ILs for evolving green renewable energy processes, this review emphasizes the significance of ILs as electrolytes and reaction media in two primary areas of interest: CO2 electroreduction and organic molecule electrosynthesis via CO2 transformation. Herein, we briefly summarize the most recent advances in the field, as well as approaches based on the electrochemical conversion of CO2 to industrially important compounds employing ILs as an electrolyte and/or reaction media. In addition, the review also discusses the advances made possible by deep eutectic solvents (DESs) in CO2 electroreduction to CO. Finally, the critical techno-commercial issues connected with employing ILs and DESs as an electrolyte or ILs as reaction media are reviewed, along with a future perspective on the path to rapid industrialization.
Collapse
Affiliation(s)
- Kranthi Kumar Maniam
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK;
| | - Shiladitya Paul
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK;
- Materials and Structural and Integrity Technology Group, TWI, Cambridge CB21 6AL, UK
| |
Collapse
|
18
|
Feric TG, Hamilton ST, Cantillo NM, Imel AE, Zawodzinski TA, Park AHA. Dynamic Mixing Behaviors of Ionically Tethered Polymer Canopy of Nanoscale Hybrid Materials in Fluids of Varying Physical and Chemical Properties. J Phys Chem B 2021; 125:9223-9234. [PMID: 34370476 DOI: 10.1021/acs.jpcb.1c00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An emerging area of sustainable energy and environmental research is focused on the development of novel electrolytes that can increase the solubility of target species and improve subsequent reaction performance. Electrolytes with chemical and structural tunability have allowed for significant advancements in flow batteries and CO2 conversion integrated with CO2 capture. Liquid-like nanoparticle organic hybrid materials (NOHMs) are nanoscale fluids that are composed of inorganic nanocores and an ionically tethered polymeric canopy. NOHMs have been shown to exhibit enhanced conductivity making them promising for electrolyte applications, though they are often challenged by high viscosity in the neat state. In this study, a series of binary mixtures of NOHM-I-HPE with five different secondary fluids, water, chloroform, toluene, acetonitrile, and ethyl acetate, were prepared to reduce the fluid viscosity and investigate the effects of secondary fluid properties (e.g., hydrogen bonding ability, polarity, and molar volume) on their transport behaviors, including viscosity and diffusivity. Our results revealed that the molecular ratio of secondary fluid to the ether groups of Jeffamine M2070 (λSF) was able to describe the effect that secondary fluid has on transport properties. Our findings also suggest that in solution, the Jeffamine M2070 molecules exist in different nanoscale environments, where some are more strongly associated with the nanoparticle surface than others, and the conformation of the polymer canopy was dependent on the secondary fluid. This understanding of the polymer conformation in NOHMs can allow for the better design of an electrolyte capable of capturing and releasing small gaseous or ionic species.
Collapse
Affiliation(s)
| | | | - Nelly M Cantillo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam E Imel
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States.,Energy Storage and Membrane Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
19
|
Vasilyev DV, Dyson PJ. The Role of Organic Promoters in the Electroreduction of Carbon Dioxide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dmitry V. Vasilyev
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Rudnev AV. Electrodeposition of lanthanides from ionic liquids and deep eutectic solvents. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lanthanides belong to the most important raw materials and are highly demanded in high-tech industry. Low-temperature electrochemical deposition of lanthanides and lanthanide-based alloys for recycling and obtaining functional materials can provide a real alternative to the currently used high-temperature electrolysis of molten salts. The review summarizes the advancements in the field of electrodeposition of lanthanides from organic ionic systems, such as ionic liquids and deep eutectic solvents. The growing interest in these ionic systems is due to their excellent physicochemical properties, in particular non-volatility, thermal and electrochemical stability. The review also discusses further prospects and potential of the electrochemical approach for obtaining lanthanide-containing advanced materials.
The bibliography includes 219 references.
Collapse
|
21
|
Cui Y, He B, Liu X, Sun J. Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuandong Cui
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
22
|
Anastasiadou D, Hensen EJM, Figueiredo MC. Electrocatalytic synthesis of organic carbonates. Chem Commun (Camb) 2020; 56:13082-13092. [PMID: 33025957 DOI: 10.1039/d0cc04231e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic carbonates are considered environmentally benign alternatives for various fossil-derived compounds used in the chemical industry. Replacing current costly and toxic production methods by greener alternatives offers opportunities to cover the increasing demand for these intermediates in a more sustainable manner. In this feature article, the prospect of electrochemical synthesis of organic carbonates is presented as an approach to use carbon dioxide and green electricity to arrive at such compounds. We explore the strengths and limitations of the different methods by looking into the electrode and electrolyte composition effects and operating conditions with a focus on the synthesis of dimethylcarbonate from methanol and either carbon monoxide or carbon dioxide. The proposed mechanisms are discussed in an effort to understand the underlying steps and their challenges. This review concludes with a perspective on the broader developments needed to turn the basic chemistry into a practical application.
Collapse
Affiliation(s)
- Dimitra Anastasiadou
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
23
|
Klein JM, Squire H, Dean W, Gurkan BE. From Salt in Solution to Solely Ions: Solvation of Methyl Viologen in Deep Eutectic Solvents and Ionic Liquids. J Phys Chem B 2020; 124:6348-6357. [DOI: 10.1021/acs.jpcb.0c03296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jeffrey M. Klein
- Department of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Henry Squire
- Department of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - William Dean
- Department of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Burcu E. Gurkan
- Department of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Abstract
Electroreduction of carbon dioxide (CO2) to value-added chemicals and fuels is a promising approach for sustainable energy conversion and storage. Many electrocatalysts have been designed for this purpose and studied extensively. The role of the electrolyte is particularly interesting and is pivotal for designing electrochemical devices by taking advantage of the synergy between electrolyte and catalyst. Recently, ionic liquids as electrolytes have received much attention due to their high CO2 adsorption capacity, high selectivity, and low energy consumption. In this review, we present a comprehensive overview of the recent progress in CO2 electroreduction in ionic liquid-based electrolytes, especially in the performance of different catalysts, the electrolyte effect, as well as mechanism studies to understand the reaction pathway. Perspectives on this interesting area are also discussed for the construction of novel electrochemical systems.
Collapse
Affiliation(s)
- Dexin Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Rudnev AV, Kiran K, Broekmann P. Specific Cation Adsorption: Exploring Synergistic Effects on CO
2
Electroreduction in Ionic Liquids. ChemElectroChem 2020. [DOI: 10.1002/celc.202000223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander V. Rudnev
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of Sciences Leninskii pr. 31 Moscow 119071 Russia
| | - Kiran Kiran
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Peter Broekmann
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
26
|
Kalhor P, Xu J, Ashraf H, Cao B, Yu ZW. Structural Properties and Hydrogen-Bonding Interactions in Binary Mixtures Containing a Deep-Eutectic Solvent and Acetonitrile. J Phys Chem B 2020; 124:1229-1239. [PMID: 31984745 DOI: 10.1021/acs.jpcb.9b10751] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep-eutectic solvents (DESs) are a new class of green solvents. Here, we report the hydrogen bonding and structural properties of the archetypal DES ethaline, a mixture of choline chloride (ChCl) and ethylene glycol (EG) of a 1:2 molar ratio, and its pseudo-binary mixtures with acetonitrile. The investigations were carried out employing Fourier-transform infrared (FTIR) spectroscopy combined with quantum chemical calculations. Excess and two-dimensional (2D)-correlation spectroscopies were used to identify favorable species in the solutions and to explore the heterogeneity. The results show that the mixing process is the transformation from ethaline and CH3CN dimer to the complexes of ethaline-1CH3CN and ethaline-2CH3CN, together with the increased percentages of the EG dimer, EG trimer, and CH3CN monomer with respect to their total amounts in the mixtures. Theoretical calculations show that, for ChCl, the positive charge is located at the methyl groups and methylenes, rendering their ability to form hydrogen bonds. Adding CH3CN to ethaline can hardly break apart the doubly ionic hydrogen bonds between Ch+ and Cl-. The cosolvent molecules mainly surround the core structure of ethaline, forming noncovalent hydrogen bonds with hydroxyl groups of EG/Ch+ but not Cl-. These in-depth studies on the properties of ethaline and CH3CN/CD3CN mixed solvents may shed light on exploring their applications.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jing Xu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Hamad Ashraf
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|