1
|
Lainioti GC, Druvari D. Designing Antibacterial-Based Quaternary Ammonium Coatings (Surfaces) or Films for Biomedical Applications: Recent Advances. Int J Mol Sci 2024; 25:12264. [PMID: 39596329 PMCID: PMC11595235 DOI: 10.3390/ijms252212264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Antibacterial coatings based on quaternary ammonium compounds (QACs) have been widely investigated in controlled release applications. Quaternary ammonium compounds are low-cost and easily accessible disinfectants that have been extensively used, especially after the COVID-19 outbreak. There has been a growing interest in developing a clearer understanding of various aspects that need to be taken into account for the design of quaternary ammonium compounds to be used in the biomedical field. In this contribution, we outline the mechanism of action of those materials as well as the key design parameters associated with their structure and antibacterial activity. Moreover, emphasis has been placed on the type of antibacterial coatings based on QACs and their applications in the biomedical field. A brief outlook on future research guidelines for the development of dual-function antibacterial coatings is also discussed.
Collapse
Affiliation(s)
- Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
2
|
Pushpa Ragini S, Dyett BP, Sarkar S, Zhai J, White JF, Banerjee R, Drummond CJ, Conn CE. A systematic study of the effect of lipid architecture on cytotoxicity and cellular uptake of cationic cubosomes. J Colloid Interface Sci 2024; 663:82-93. [PMID: 38394820 DOI: 10.1016/j.jcis.2024.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
HYPOTHESIS Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Brendan P Dyett
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Sampa Sarkar
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jiali Zhai
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Calum J Drummond
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Charlotte E Conn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
3
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
4
|
Cui T, Ge L, Zhao M, Luo L, Long X. Amide Modification of Glycolipid Biosurfactants as Promising Biocompatible Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6302-6314. [PMID: 38483152 DOI: 10.1021/acs.jafc.3c08765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Discovering new antibacterial agents is crucial to addressing the increasing risk of bacterial infections induced by antimicrobial resistance in food and agricultural industries. Here, biocompatible acidic-type sophorolipids (ASLs) and glucolipids (GLs) prepared via chemical modification of natural sophorolipids from fermentation were functionalized via amide modification for use as potential antibacterial agents. It was found that the arginine methyl ester derivative of GLs (GLs-d-Arg-OMe) showed excellent antibacterial activity, killing more than 99.99% of Escherichia coli at 200 mg/L. The sterilization dosage of the GLs against Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus was 16-64 mg/L, in contrast to 32-64 mg/L for the fungus Candida albicans. In particular, GLs-d-Arg-OMe showed the best biocompatibility with a therapeutic index of up to 18. It was shown that amide modification of glycolipids can effectively improve antibacterial activity while maintaining biocompatibility, which can be exploited for the development of novel antibiotics in food and agricultural fields.
Collapse
Affiliation(s)
- Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Lianpeng Ge
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Mengqian Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Li Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China
| |
Collapse
|
5
|
Pala M, Castelein MG, Dewaele C, Roelants SLKW, Soetaert WK, Stevens CV. Tuning the antimicrobial activity of microbial glycolipid biosurfactants through chemical modification. Front Bioeng Biotechnol 2024; 12:1347185. [PMID: 38419728 PMCID: PMC10900251 DOI: 10.3389/fbioe.2024.1347185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Sophorolipids, glycolipid biosurfactants derived from microorganisms such as Starmerella bombicola, possess distinctive surface-active and bioactive properties, holding potential applications in cosmetics, pharmaceuticals and bioremediation. However, the limited structural variability in wild-type sophorolipids restricts their properties and applications. To address this, metabolic engineering efforts have allowed to create a portfolio of molecules. In this study, we went one step further by chemically modifying microbially produced sophorosides, produced by an engineered S. bombicola. Twenty-four new sophoroside derivatives were synthesized, including sophoroside amines with varying alkyl chain lengths (ethyl to octadecyl) on the nitrogen atom and their corresponding quaternary ammonium salts. Additionally, six different microbially produced glycolipid biosurfactants were hydrogenated to achieve fully saturated lipid tails. These derivatives, along with microbially produced glycolipids and three benchmark biosurfactants (di-rhamnolipids, alkyl polyglucosides, cocamidopropyl betaine), were assessed for antimicrobial activity against bacteria (Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa) and yeast (Candida albicans). Results indicated that microbially produced glycolipids, such as bola sophorosides, acidic sophorolipids and acidic glucolipids exhibit selective antimicrobial activity against the test organisms. Conversely, lactonic sophorolipids, sophoroside amines and quaternary ammonium salts display a broad antimicrobial activity. N-octyl, N-dodecyl and N-octadecyl derivatives exhibit the lowest minimal inhibitory concentrations, ranging from 0.014 to 20.0 mg mL-1. This study demonstrates the potential synergy of thoughtful biotechnology and targeted chemistry to precisely tailor glycolipid biosurfactants to meet specific requirements across applications.
Collapse
Affiliation(s)
- Melike Pala
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martijn G. Castelein
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Camille Dewaele
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sophie L. K. W. Roelants
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Wim K. Soetaert
- Department of Biotechnology, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium
| | - Christian V. Stevens
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
7
|
Zhou Z, Zhou S, Zhang X, Zeng S, Xu Y, Nie W, Zhou Y, Xu T, Chen P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug Chem 2023; 34:302-325. [PMID: 36748912 DOI: 10.1021/acs.bioconjchem.2c00598] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Zhenyang Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 236000, China
| | - Xiran Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Cui T, Tang Y, Zhao M, Hu Y, Jin M, Long X. Preparing Biosurfactant Glucolipids from Crude Sophorolipids via Chemical Modifications and Their Potential Application in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2964-2974. [PMID: 36723399 DOI: 10.1021/acs.jafc.2c06066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This investigation developed a novel strategy for efficiently preparing glucolipids (GLs) by chemically modifying crude sophorolipids. Running this strategy, crude sophorolipids were effectively transformed into GLs through deglycosylation and de-esterification, with a yield of 54.1%. The acquired GLs were then purified via stepwise extractions, and 66.2% of GLs with 95% purity was recovered. GLs are more hydrophobic and present a stronger surface activity than acidic sophorolipids (ASLs). More importantly, these GLs displayed a superior antimicrobial activity to that of ASLs against the tested Gram-positive food pathogens, with a minimum inhibitory concentration of 32-64 mg/L, except against E. coli . This activity of GLs is pH-dependent and especially more powerful under acidic conditions. The mechanism involved is possibly associated with the more efficient adsorption of GLs, as demonstrated by the hydrophobicity of the cell membrane. These GLs could be used as antimicrobial agents for food preservation and health in the food industry.
Collapse
Affiliation(s)
- Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yujing Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mengqian Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Yang Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, PR China
| |
Collapse
|
9
|
Sałek K, Euston SR, Janek T. Phase Behaviour, Functionality, and Physicochemical Characteristics of Glycolipid Surfactants of Microbial Origin. Front Bioeng Biotechnol 2022; 10:816613. [PMID: 35155390 PMCID: PMC8830654 DOI: 10.3389/fbioe.2022.816613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Growing demand for biosurfactants as environmentally friendly counterparts of chemically derived surfactants enhances the extensive search for surface-active compounds of biological (microbial) origin. The understanding of the physicochemical properties of biosurfactants such as surface tension reduction, dispersion, emulsifying, foaming or micelle formation is essential for the successful application of biosurfactants in many branches of industry. Glycolipids, which belong to the class of low molecular weight surfactants are currently gaining a lot of interest for industrial applications. For this reason, we focus mainly on this class of biosurfactants with particular emphasis on rhamnolipids and sophorolipids, the most studied of the glycolipids.
Collapse
Affiliation(s)
- Karina Sałek
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Karina Sałek,
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Process Development in Biosurfactant Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:195-233. [DOI: 10.1007/10_2021_195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Yang J, Zhu YX, Lu P, Zhu B, Wu FG. One-step synthesis of quaternized silica nanoparticles with bacterial adhesion and aggregation properties for effective antibacterial and antibiofilm treatments. J Mater Chem B 2022; 10:3073-3082. [DOI: 10.1039/d1tb02830h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preservation of intact cell morphology of bacteria is recognized as one important cause of bacterial drug resistance, and hence developing new antibacterial agents capable of fighting against bacteria via disrupting...
Collapse
|
12
|
Tang Y, Jin M, Cui T, Hu Y, Long X. Efficient Preparation of Sophorolipids and Functionalization with Amino Acids to Furnish Potent Preservatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9608-9615. [PMID: 34387482 DOI: 10.1021/acs.jafc.1c03439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new preservatives is an ongoing investigation in the food industry, especially those which are safe and environmentally friendly. In this study, biosurfactant sophorolipids (SLs) functionalized with amino acids were developed as efficient preservative agents. SLs were first isolated from fermentation broth by Candida bombicola ATCC 22214, hydrolyzed, and purified by extraction. The typical recovery is around 70%, while the extracted material consists of over 90% deacetylated acidic SLs (SL-COOH). Four types of SL derivatives were then synthesized via dicyclohexylcarbodiimide amidation reactions from prepared SL-COOH. Among the derivatives produced, the arginine SL conjugates (SL-d-Arg) displayed the highest activity against Gram-positive bacteria and fungi and even inhibited the cell growth of Gram-negative bacteria and mildew. Furthermore, the arginine conjugates performed the broadest antimicrobial activity among the derivatives evaluated. The sterilization dosage of the arginine conjugates against the food-spoilage pathogen Bacillus spp. was 63-125 mg/L, in contrast to 250 mg/L for the enterotoxin producer Staphylococcus aureus and 500 mg/L for fungi. More importantly, SL-d-Arg displayed excellent biocompatibility, with a therapeutic index of over 7.94. SL-d-Arg has excellent potential as an alternative to traditional chemical preservatives.
Collapse
Affiliation(s)
- Yujing Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tianyou Cui
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yang Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
13
|
Subramaniam MD, Venkatesan D, Iyer M, Subbarayan S, Govindasami V, Roy A, Narayanasamy A, Kamalakannan S, Gopalakrishnan AV, Thangarasu R, Kumar NS, Vellingiri B. Biosurfactants and anti-inflammatory activity: A potential new approach towards COVID-19. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 17:72-81. [PMID: 33015428 PMCID: PMC7525250 DOI: 10.1016/j.coesh.2020.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has grown to be global public health emergency. The biosurfactants (BSs) are surface-active biomolecules with unique properties and wide applications. Several microbes synthesize secondary metabolites with surface-active properties, which have a wide range of anti-inflammatory and anti-viral roles. The monocytes and neutrophils are activated by bacteria, which subsequently result in high secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-12, Il-18 and IL-1β) and toll-like receptors-2 (TLR-2). Following the inflammatory response, BSs induce the production of cationic proteins, reactive oxygen species (ROS) and lysozyme, and thus can be used for therapeutic purposes. This article provides recent advances in the anti-inflammatory and antiviral activities of BSs and discusses the potential use of these compounds against COVID-19, highlighting the need for in-vitro and in-vivo approaches to confirm this hypothesis. This suggestion is necessary because there are still no studies that have focused on the use of BSs against COVID-19.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Sarathbabu Subbarayan
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004, Mizoram, India
| | | | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab, 144411, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Siva Kamalakannan
- National Center for Disease Control, Ministry of Health and Family Welfare, Government of India, New Delhi, 110054, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Raviminickam Thangarasu
- School of Life Sciences, Department of Zoology, Tamil Nadu Open University, Chennai, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004, Mizoram, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|