1
|
Saha R, Hembram BC, Panda S, Ghosh R, Bagh B. Iron-Catalyzed sp 3 C-H Alkylation of Fluorene with Primary and Secondary Alcohols: A Borrowing Hydrogen Approach. J Org Chem 2024; 89:16223-16241. [PMID: 39175426 DOI: 10.1021/acs.joc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The utilization of earth-abundant, cheap, and nontoxic transition metals in important catalytic transformations is essential for sustainable development, and iron has gained significant attention as the most abundant transition metal. A mixture of FeCl2 (3 mol %), phenanthroline (6 mol %), and KOtBu (0.4 eqivalent) was used as an effective catalyst for the sp3 C-H alkylation of fluorene using alcohol as a nonhazardous alkylating partner, and eco-friendly water was formed as the only byproduct. The substrate scope includes a wide range of substituted fluorenes and substituted benzyl alcohols. The reaction is equally effective with challenging secondary alcohols and unactivated aliphatic alcohols. Selective mono-C9-alkylation of fluorenes with alcohols yielded the corresponding products in good isolated yields. Various postfunctionalizations of C-9 alkylated fluorene products were performed to establish the practical utility of this catalytic alkylation. Control experiments suggested a homogeneous reaction path involving borrowing hydrogen mechanism with the formation and subsequent reduction of 9-alkylidene fluorene intermediate.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| |
Collapse
|
2
|
Wani AA, Bhujbal SM, Sherpa D, Kathuria D, Chourasiya SS, Sahoo SC, Bharatam PV. An NNN Pd(II) pincer complex with 1,1-diaminoazine: a versatile catalyst for acceptorless dehydrogenative coupling reactions. Org Biomol Chem 2024. [PMID: 39534965 DOI: 10.1039/d4ob01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An azine-based, non-palindromic, neutral NNN-pincer ligand was synthesised in a single step with an yield of 85%. The palladation of the ligand, using Pd(OAc)2, was performed in acetonitrile at room temperature to obtain the pincer complex in 88% yield through a simple, cost-effective, and straightforward synthetic procedure. The structure of the complex was confirmed by 1H NMR, 13C NMR, FT-IR, and mass spectrometry. The variable temperature NMR spectra revealed the stability of the complex even at higher temperatures, a characteristic feature of pincer complexes. The generated complex proved to be a versatile catalyst for Acceptorless Dehydrogenative Coupling (ADC) to synthesize N-heterocycles: (i) 1,2-disubstituted benzimidazoles, (ii) 2-phenylquinolines, (iii) 2-phenylquinoxalines and (iv) 2-phenylquinazolinones. Since the side products of the reactions are H2O and H2 gas, the catalysis can be considered as a green catalytic process. Quantum chemical calculations indicated the participation of a possible nitrene-imide conversion process during the Metal-Ligand Cooperation (MLC) in ADC reactions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab, India
| | - Shivkanya Madhavrao Bhujbal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deekey Sherpa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Chandigarh, Punjab 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
3
|
Bari MA, Elsherbeni SA, Maqbool T, Latham DE, Gushlow EB, Harper EJ, Morrill LC. Iron-Catalyzed Transfer Hydrogenation of Allylic Alcohols with Isopropanol. J Org Chem 2024; 89:14571-14576. [PMID: 39320102 PMCID: PMC11459429 DOI: 10.1021/acs.joc.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Herein, we report an iron-catalyzed transfer hydrogenation of allylic alcohols. The operationally simple protocol employs a well-defined bench stable (cyclopentadienone)iron(0) carbonyl complex as a precatalyst in combination with K2CO3 (4 mol %) and isopropanol as the hydrogen donor. A diverse range of allylic alcohols undergo transfer hydrogenation to form the corresponding alcohols in good yields (33 examples, ≤83% isolated yield). The scope and limitations of the method have been investigated, and experiments that shed light on the reaction mechanism have been conducted.
Collapse
Affiliation(s)
- Md Abdul Bari
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Salma A. Elsherbeni
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tahir Maqbool
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Daniel E. Latham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Edward B. Gushlow
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Emily J. Harper
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
5
|
Joly N, Colella A, Mendy ME, Mbaye MD, Gaillard S, Poater A, Renaud JL. Blue-Light Induced Iron-Catalyzed Synthesis of γ,δ-Unsaturated Ketones. CHEMSUSCHEM 2024; 17:e202301472. [PMID: 38010264 DOI: 10.1002/cssc.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
A visible-light-induced iron-catalyzed α-alkylation of ketones with allylic and propargylic alcohols as pro-electrophiles is reported. The diaminocyclopentadienone iron tricarbonyl complex plays a dual role by harvesting light and facilitating dehydrogenation and reduction steps without the help of any exogenous photosensitizer. γ,δ-Unsaturated ketones can now be accessed through this borrowing hydrogen methodology at room temperature. Mechanistic investigations revealed that the steric hindrance on the δ-position of either the dienone or ene-ynone intermediate is the key feature to prevent or decrease the competitive 1,6-reduction (and consequently the formation of the saturated ketone) and to favor the synthesis of a set of non-conjugated enones and ynones.
Collapse
Affiliation(s)
- Nicolas Joly
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ Mª Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Alessandro Colella
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
| | - Monique-Edwige Mendy
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Université Assane Seck de Ziguinchor BP 523, Ziguinchor, Sénégal
| | | | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/ Mª Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000, Caen, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005, Paris, France
| |
Collapse
|
6
|
Werley BK, Hou X, Bertonazzi EP, Chianese A, Funk TW. Substituent Effects and Mechanistic Insights on the Catalytic Activities of (Tetraarylcyclopentadienone)iron Carbonyl Compounds in Transfer Hydrogenations and Dehydrogenations. Organometallics 2023; 42:3053-3065. [PMID: 38028505 PMCID: PMC10647929 DOI: 10.1021/acs.organomet.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 12/01/2023]
Abstract
(Cyclopentadienone)iron carbonyl compounds are catalytically active in carbonyl/imine reductions, alcohol oxidations, and borrowing hydrogen reactions, but the effect of cyclopentadienone electronics on their activity is not well established. A series of (tetraarylcyclopentadienone)iron tricarbonyl compounds with varied electron densities on the cyclopentadienone were prepared, and their activities in transfer hydrogenations and dehydrogenations were explored. Additionally, mechanistic studies, including kinetic isotope effect experiments and modifications to substrate electronics, were undertaken to gain insights into catalyst resting states and turnover-limiting steps of these reactions. As the cyclopentadienone electron density increased, both the transfer hydrogenation and dehydrogenation rates increased. A catalytically relevant, trimethylamine-ligated iron compound was isolated and characterized and was observed in solution under both transfer hydrogenation and dehydrogenation conditions. Importantly, it was catalytically active in both reactions. Kinetic isotope effect data and initial rates in transfer hydrogenation reactions with 4'-substituted acetophenones provided evidence that hydrogen transfer from the catalyst to the carbonyl substrate occurred during the turnover-limiting step, and NMR spectroscopy supports the trimethylamine adduct as an off-cycle resting state and the (hydroxycyclopentadienyl)iron hydride as an on-cycle resting state. In transfer dehydrogenations of alcohols, the use of electronically modified benzylic alcohols provided evidence that the turnover-limiting step involves the transfer of hydrogen from the alcohol substrate to the catalyst. The trimethylamine-ligated compound was proposed as the primary catalyst resting state in dehydrogenations.
Collapse
Affiliation(s)
- Bryn K. Werley
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Xintong Hou
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Evan P. Bertonazzi
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Anthony Chianese
- Department
of Chemistry, Colgate University, Hamilton, New York 13346, United States
| | - Timothy W. Funk
- Department
of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| |
Collapse
|
7
|
Abstract
Herein, we have demonstrated a simple nickel-catalyzed C-3-selective alkylation of 2-oxindoles using a wide variety of secondary alkyl alcohols. As a special highlight, functionalization of the cholesterol derivative was reported. Control experiments, initial mechanistic studies, and deuterium-labeling experiments were performed for the alkylation process.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Adrija Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debasis Banerjee
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
8
|
Saini P, Dolui P, Nair A, Verma A, Elias AJ. A Bench-stable 8-Aminoquinoline Derived Phosphine-free Manganese (I)-Catalyst for Environmentally Benign C(α)-Alkylation of Oxindoles with Secondary and Primary Alcohols. Chem Asian J 2023; 18:e202201148. [PMID: 36688923 DOI: 10.1002/asia.202201148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Herein, we report a new air-stable phosphine-free 8-AQ (8-aminoquinoline) based Mn(I) carbonyl complex as the catalyst for the C(α)-alkylation of oxindoles with alcohols. The Mn complex [(8-AQ)Mn(CO)3 Br] works effectively as a catalyst for the α-alkylation of oxindoles by both secondary as well as primary alcohols. The procedure has been used for the synthesis of pharmaceutically important recently developed oxindoles such as 3-(4-methoxybenzyl)indolin-2-one, 3-(4-(dimethylamino)benzyl)indolin-2-one, 3-(4-(dimethylamino)phenyl)-5-fluoroindolin-2-one and 3-(benzo[d][1,3]dioxol-5-ylmethyl)indolin-2-one, which are found to be effective in preventing specific types of cell death in neurodegenerative disorders. Control experiments have been carried out to investigate the reaction mechanism and the crucial role of metal-ligand cooperation via -NH2 moiety during catalysis.
Collapse
Affiliation(s)
- Parul Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pritam Dolui
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Abhishek Nair
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashutosh Verma
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anil J Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
9
|
Yang X, Tian X, Sun N, Hu B, Shen Z, Hu X, Jin L. Geometry-Constrained N, N, O-Nickel Catalyzed α-Alkylation of Unactivated Amides via a Borrowing Hydrogen Strategy. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xue Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xiaoyu Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Abdallah MS, Joly N, Gaillard S, Poater A, Renaud JL. Blue-Light-Induced Iron-Catalyzed α-Alkylation of Ketones. Org Lett 2022; 24:5584-5589. [PMID: 35895992 DOI: 10.1021/acs.orglett.2c02233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a visible-light-induced iron-catalyzed α-alkylation of ketones. The photocatalytic system is based on the single diaminocyclopentadienone iron tricarbonyl complex. Two catalytic intermediates of this complex are able to harvest light, allowing the synthesis of substituted aromatic and aliphatic ketones at room temperature using the borrowing hydrogen strategy in the presence of various substituted primary alcohols as alkylating reagents. Preliminary mechanistic studies unveil the role of light for both the dehydrogenation and reduction step.
Collapse
Affiliation(s)
- Marie-Samira Abdallah
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Nicolas Joly
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.,Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia Spain
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia Spain
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| |
Collapse
|
11
|
Hackl L, Ho LP, Bockhardt D, Bannenberg T, Tamm M. Tetraaminocyclopentadienone Iron Complexes as Hydrogenation Catalysts. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludwig Hackl
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Luong Phong Ho
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Dustin Bockhardt
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Mondal A, Sharma R, Dutta B, Pal D, Srimani D. Well-Defined NNS-Mn Complex Catalyzed Selective Synthesis of C-3 Alkylated Indoles and Bisindolylmethanes Using Alcohols. J Org Chem 2022; 87:3989-4000. [PMID: 35258302 DOI: 10.1021/acs.joc.1c02702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates including nine structurally important drug molecules are synthesized. Furthermore, we also introduced a one-pot cascade strategy for synthesizing C-3 functionalized indoles directly from 2-aminophenyl ethanol and alcohol.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bishal Dutta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
13
|
Pawar G, Ghouse SM, Kar S, Chelli SM, Dannarm SR, Gour J, Sonti R, Nanduri S. SmI2-mediated C-alkylation of Ketones with Alcohols in Microwave conditions: A Novel Route to Alkylated Ketones. Chem Asian J 2022; 17:e202200041. [PMID: 35191612 DOI: 10.1002/asia.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Indexed: 11/08/2022]
Abstract
A novel protocol is developed towards the preparation of alkylated ketones from alcohols in presence of catalytic amount of SmI 2 and base with the elimination of water as a single by-product under microwave irradiation conditions. Furthermore, applicability of this methodology to the synthesis of Donepezil and late-stage functionalization in Pregnenolone is also reported. Successful application of this methodology in Friedländer quinolone synthesis using 2-aminobenzyl alcohol and various acetophenones expand the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Gaurav Pawar
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Shaik Mahammad Ghouse
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Swayamsiddha Kar
- Sri Satya Sai Institute of Higher Learning: Sri Sathya Sai University, Department of chemistry, INDIA
| | - Sai Manohar Chelli
- Sri Satya Sai Institute of Higher Learning: Sri Sathya Sai University, Department of chemistry, INDIA
| | - Srinivas Reddy Dannarm
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Pharmaceutical analysis, INDIA
| | - Jitendra Gour
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Rajesh Sonti
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Pharmaceutical analysis, INDIA
| | - Srinivas Nanduri
- National Institute of Pharmaceutical Education & Research, Process Chemistry, Balanagar, 500037, Hyderabad, INDIA
| |
Collapse
|
14
|
Wu D, Wang Y, Li M, Shi L, Liu J, Liu N. Nickel‐catalyzed α‐alkylation of ketones with benzyl alcohols. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Di Wu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Yubin Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Lei Shi
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| |
Collapse
|
15
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
16
|
Akter M, Anbarasan P. (Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis. Chem Asian J 2021; 16:1703-1724. [PMID: 33999506 DOI: 10.1002/asia.202100400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/22/2022]
Abstract
(Cyclopentadienone)iron tricarbonyl complexes are catalytically active, inexpensive, easily accessible and air-stable that are extensively studied as an active pre-catalyst in homogeneous catalysis. Its versatile catalytic activity arises exclusively due to the presence of a non-innocent ligand, which can trigger its unique redox properties effectively. These complexes have been employed widely in (transfer)hydrogenation (e. g., reduction of polar multiple bonds, Oppenauer-type oxidation of alcohols), C-C and C-N bond formation (e. g., reductive aminations, α-alkylation of ketones) and other synthetic transformations. In this review, we discuss the remarkable advancement of its various synthetic applications along with synthesis and mechanistic studies, until February 2021.
Collapse
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Fujita S, Imagawa K, Yamaguchi S, Yamasaki J, Yamazoe S, Mizugaki T, Mitsudome T. A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Sci Rep 2021; 11:10673. [PMID: 34021187 PMCID: PMC8140154 DOI: 10.1038/s41598-021-89561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Although transition metal phosphides are well studied as electrocatalysts and hydrotreating catalysts, the application of metal phosphides in organic synthesis is rare, and cooperative catalysis between metal phosphides and supports remains unexplored. Herein, we report that a cerium dioxide-supported nickel phosphide nanoalloy (nano-Ni2P/CeO2) efficiently promoted the C-3 alkylation of oxindoles with alcohols without any additives through the borrowing hydrogen methodology. Oxindoles were alkylated with various alcohols to provide the corresponding C-3 alkylated oxindoles in high yields. This is the first catalytic system for the C-3 alkylation of oxindoles with alcohols using a non-precious metal-based heterogeneous catalyst. The catalytic activity of nano-Ni2P/CeO2 was comparable to that reported for precious metal-based catalysts. Moreover, nano-Ni2P/CeO2 was easily recoverable and reusable without any significant loss of activity. Control experiments revealed that the Ni2P nanoalloy and the CeO2 support functioned cooperatively, leading to a high catalytic performance.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kohei Imagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
18
|
Joly N, Bettoni L, Gaillard S, Poater A, Renaud JL. Phosphine-Free Ruthenium Complex-Catalyzed Synthesis of Mono- or Dialkylated Acyl Hydrazides via the Borrowing Hydrogen Strategy. J Org Chem 2021; 86:6813-6825. [PMID: 33878271 DOI: 10.1021/acs.joc.1c00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a diaminocyclopentadienone ruthenium tricarbonyl complex-catalyzed synthesis of mono- or dialkylated acyl hydrazide compounds using the borrowing hydrogen strategy in the presence of various substituted primary and secondary alcohols as alkylating reagents. Deuterium labeling experiments confirm that the alcohols were the hydride source in this cascade process. Density functional theory (DFT) calculations unveil the origin and the threshold between the mono- and dialkylation.
Collapse
Affiliation(s)
- Nicolas Joly
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France.,Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Léo Bettoni
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Sylvain Gaillard
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| |
Collapse
|
19
|
Rana J, Nagarasu P, Subaramanian M, Mondal A, Madhu V, Balaraman E. Manganese-Catalyzed C(α)-Alkylation of Oxindoles with Secondary Alcohols via Borrowing Hydrogen. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jagannath Rana
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Palaniyappan Nagarasu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Vedichi Madhu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
20
|
Putta RR, Chun S, Choi SH, Lee SB, Oh DC, Hong S. Iron(0)-Catalyzed Transfer Hydrogenative Condensation of Nitroarenes with Alcohols: A Straightforward Approach to Benzoxazoles, Benzothiazoles, and Benzimidazoles. J Org Chem 2020; 85:15396-15405. [DOI: 10.1021/acs.joc.0c02191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Chun S, Ahn J, Putta RR, Lee SB, Oh DC, Hong S. Direct Synthesis of Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols. J Org Chem 2020; 85:15314-15324. [DOI: 10.1021/acs.joc.0c02145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Chakraborty P, Garg N, Manoury E, Poli R, Sundararaju B. C-Alkylation of Various Carbonucleophiles with Secondary Alcohols under CoIII-Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01728] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Nidhi Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| |
Collapse
|
23
|
Putta RR, Chun S, Lee SB, Oh DC, Hong S. Iron-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Aromatic Diamines: Selective Synthesis of 1,2-Disubstituted Benzimidazoles. Front Chem 2020; 8:429. [PMID: 32637390 PMCID: PMC7317090 DOI: 10.3389/fchem.2020.00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Benzimidazoles are important N-heteroaromatic compounds with various biological activities and pharmacological applications. Herein, we present the first iron-catalyzed selective synthesis of 1,2-disubstituted benzimidazoles via acceptorless dehydrogenative coupling of primary alcohols with aromatic diamines. The tricarbonyl (η4-cyclopentadienone) iron complex catalyzed dehydrogenative cyclization, releasing water and hydrogen gas as by-products. The earth abundance and low toxicity of iron metal enable the provision of an eco-friendly and efficient catalytic method for the synthesis of benzimidazoles.
Collapse
Affiliation(s)
| | - Simin Chun
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seok Beom Lee
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dong-Chan Oh
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Suckchang Hong
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Lan XB, Ye Z, Liu J, Huang M, Shao Y, Cai X, Liu Y, Ke Z. Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Non-bifunctional Pincer N-heterocyclic Carbene Manganese. CHEMSUSCHEM 2020; 13:2557-2563. [PMID: 32233008 DOI: 10.1002/cssc.202000576] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 06/10/2023]
Abstract
A sustainable and green route to access diverse functionalized ketones via dehydrogenative-dehydrative cross-coupling of primary and secondary alcohols is demonstrated. This borrowing hydrogen approach employing a pincer N-heterocyclic carbene Mn complex displays high activity and selectivity. A variety of primary and secondary alcohols are well tolerant and result in satisfactory isolated yields. Mechanistic studies suggest that this reaction proceeds via a direct outer-sphere mechanism and the dehydrogenation of the secondary alcohol substrates plays a vital role in the rate-limiting step.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Youxiang Shao
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, 528041, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
25
|
Sk M, Kumar A, Das J, Banerjee D. A Simple Iron-Catalyst for Alkenylation of Ketones Using Primary Alcohols. Molecules 2020; 25:molecules25071590. [PMID: 32235642 PMCID: PMC7181299 DOI: 10.3390/molecules25071590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/28/2022] Open
Abstract
Herein, we developed a simple iron-catalyzed system for the α-alkenylation of ketones using primary alcohols. Such acceptor-less dehydrogenative coupling (ADC) of alcohols resulted in the synthesis of a series of important α,β-unsaturated functionalized ketones, having aryl, heteroaryl, alkyl, nitro, nitrile and trifluoro-methyl, as well as halogen moieties, with excellent yields and selectivity. Initial mechanistic studies, including deuterium labeling experiments, determination of rate and order of the reaction, and quantitative determination of H2 gas, were performed. The overall transformations produce water and dihydrogen as byproducts.
Collapse
|
26
|
Bettoni L, Gaillard S, Renaud JL. Iron-Catalyzed α-Alkylation of Ketones with Secondary Alcohols: Access to β-Disubstituted Carbonyl Compounds. Org Lett 2020; 22:2064-2069. [PMID: 32091220 DOI: 10.1021/acs.orglett.0c00549] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An iron-catalyzed borrowing hydrogen strategy has been applied in the synthesis of β-branched carbonyl compounds. Various secondary benzylic and aliphatic alcohols have been used as alkylating reagents under mild reaction conditions. The ketones have been isolated in good to excellent yield. Deuterium labeling experiments provide evidence that the alcohol is the hydride source in this reaction and that no reversible step or hydrogen/deuterium scrambling takes place during the process.
Collapse
Affiliation(s)
- Léo Bettoni
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin,14000 Caen, France
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin,14000 Caen, France
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin,14000 Caen, France
| |
Collapse
|
27
|
Ndiaye D, Coufourier S, Mbaye MD, Gaillard S, Renaud JL. Cyclopentadienone Iron Tricarbonyl Complexes-Catalyzed Hydrogen Transfer in Water. Molecules 2020; 25:E421. [PMID: 31968608 PMCID: PMC7024363 DOI: 10.3390/molecules25020421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022] Open
Abstract
The development of efficient and low-cost catalytic systems is important for the replacement of robust noble metal complexes. The synthesis and application of a stable, phosphine-free, water-soluble cyclopentadienone iron tricarbonyl complex in the reduction of polarized double bonds in pure water is reported. In the presence of cationic bifunctional iron complexes, a variety of alcohols and amines were prepared in good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Daouda Ndiaye
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14050 Caen, France
- Université Assane Seck de Ziguinchor, BP 523, Ziguinchor, Senegal
| | - Sébastien Coufourier
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14050 Caen, France
| | | | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14050 Caen, France
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14050 Caen, France
| |
Collapse
|
28
|
Abstract
β-Branched alkylated alcohols have been prepared in good yields using a double-hydrogen autotransfer strategy in the presence of our diaminocyclopentadienone iron tricarbonyl complex Fe1. The alkylation of some 2-arylethanol derivatives was successfully addressed with benzylic alcohols and methanol as alkylating reagents under mild conditions. Deuterium labeling experiments suggested that both alcohols (2-arylethanol and either methanol or benzyl alcohol) served as hydrogen donors in this cascade process.
Collapse
Affiliation(s)
- Léo Bettoni
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| |
Collapse
|
29
|
Latham DE, Polidano K, Williams JMJ, Morrill LC. One-Pot Conversion of Allylic Alcohols to α-Methyl Ketones via Iron-Catalyzed Isomerization-Methylation. Org Lett 2019; 21:7914-7918. [PMID: 31536370 PMCID: PMC7007281 DOI: 10.1021/acs.orglett.9b02900] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/28/2022]
Abstract
A one-pot iron-catalyzed conversion of allylic alcohols to α-methyl ketones has been developed. This isomerization-methylation strategy utilized a (cyclopentadienone)iron(0) carbonyl complex as precatalyst and methanol as the C1 source. A diverse range of allylic alcohols undergoes isomerization-methylation to form α-methyl ketones in good isolated yields (up to 84% isolated yield).
Collapse
Affiliation(s)
- Daniel E. Latham
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Main Building,
Park Place, Cardiff, CF10 3AT, U.K.
| | - Kurt Polidano
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Main Building,
Park Place, Cardiff, CF10 3AT, U.K.
| | | | - Louis C. Morrill
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Main Building,
Park Place, Cardiff, CF10 3AT, U.K.
| |
Collapse
|
30
|
Polidano K, Williams JMJ, Morrill LC. Iron-Catalyzed Borrowing Hydrogen β- C(sp 3)-Methylation of Alcohols. ACS Catal 2019; 9:8575-8580. [PMID: 32064149 PMCID: PMC7011770 DOI: 10.1021/acscatal.9b02461] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Herein we report the iron-catalyzed β-C(sp3)-methylation of primary alcohols using methanol as a C1 building block. This borrowing hydrogen approach employs a well-defined bench-stable (cyclopentadienone)iron(0) carbonyl complex as precatalyst (5 mol %) and enables a diverse selection of substituted 2-arylethanols to undergo β-C(sp3)-methylation in good isolated yields (24 examples, 65% average yield).
Collapse
Affiliation(s)
- Kurt Polidano
- Cardiff
Catalysis Institute, School of Chemistry,
Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | | | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry,
Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| |
Collapse
|
31
|
Gour J, Gatadi S, Malasala S, Yaddanpudi MV, Nanduri S. A Microwave-Assisted SmI 2-Catalyzed Direct N-Alkylation of Anilines with Alcohols. J Org Chem 2019; 84:7488-7494. [PMID: 31066282 DOI: 10.1021/acs.joc.9b00717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new protocol for the alkylation of aromatic amines has been described using alcohols in the presence of SmI2 as a catalyst with the generation of water as the sole byproduct. The reaction proceeds under MW conditions and selectively generates monoalkylated amines. This protocol features a broad substrate scope and good functional-group tolerance with moderate to high yields.
Collapse
Affiliation(s)
- Jitendra Gour
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500 037 , India
| | - Srikanth Gatadi
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500 037 , India
| | - Satyaveni Malasala
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500 037 , India
| | - Madhavi Venkata Yaddanpudi
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500 037 , India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500 037 , India
| |
Collapse
|