1
|
Lv Y, Liu C, Ma Y, Liu G, Wang F, Xia Y, Lin C, Shao C, Yang Z. Effect of Sb-Bi alloying on electron-hole recombination time of Cs 2AgBiBr 6 double perovskite. Phys Chem Chem Phys 2024; 26:28865-28873. [PMID: 39533861 DOI: 10.1039/d4cp01678e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The double perovskite material Cs2AgBiBr6, characterized by high stability, low toxicity, and excellent optoelectronic properties, has emerged as a promising alternative to lead-based halide perovskites in photovoltaic applications. However, its photovoltaic conversion efficiency after integration into solar cell devices is less than 3%, significantly lower than that of traditional perovskite solar cells. While alloying methods have been widely applied in the design of photovoltaic materials, their specific role in modulating the lifetime of photo-generated charge carriers in double-perovskite solar cells remains inadequately explored. In this study, through nonadiabatic molecular dynamics (NAMD) simulations, the excited-state dynamics properties of Cs2AgBiBr6 and alloyed Cs2AgSb0.375Bi0.625Br6 samples were compared. The results revealed that the introduction of Sb ions into the double perovskite structure induces lattice deformation upon heating to 300 K, leading to distortion of Bi-Br bonds and enhanced valence band delocalization. Using the decoherence-induced surface hopping method, the capture and recombination processes of charge carriers between different states were simulated. It was suggested that hole lifetime serves as the primary limiting factor for carrier lifetime in Cs2AgBiBr6, and replacing 0.375 proportion of Bi with Sb can decelerate the hole capture rate, extending carrier lifetime by 3-4 times. This study demonstrates that alloying offers a viable approach to optimizing the optoelectronic performance of the Cs2AgBiBr6 perovskite, thereby advancing the application of double perovskite materials in the field of photovoltaics.
Collapse
Affiliation(s)
- Yuzhuo Lv
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Chang Liu
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Yuhang Ma
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Guodong Liu
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Fei Wang
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Yuhong Xia
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Chundan Lin
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Changjin Shao
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| | - Zhenqing Yang
- Basic Research Center for Energy Interdisciplinary, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, P. R. China.
| |
Collapse
|
2
|
Navarro N, Núñez C, Espinoza D, Gallardo K, Brito I, Castillo R. Synthesis, Characterization, and Photoelectric and Electrochemical Behavior of (CH 3NH 3) 2Zn 1-xCo xBr 4 Perovskites. Inorg Chem 2023; 62:17046-17051. [PMID: 37814970 DOI: 10.1021/acs.inorgchem.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We report the synthesis, characterization, and photoelectric and electrochemical properties of (CH3NH3)2Zn1-xCoxBr4 (x = 0.0, 0.3, 0.5, 0.7, and 1.0) samples. X-ray powder and single-crystal diffraction confirm the formation of solid solution across the entire range. Additionally, as the cobalt concentration increases, the crystallinity of the samples decreases, as indicated by the powder diffraction patterns. All samples remain stable up to 560 K, beyond which they decompose into CH3NH3Br and the respective bromide. The semiconductor behavior of the compounds is confirmed through optical absorption measurements, and band gap values are determined by using the Tauc method from diffuse reflectance spectra. Raman spectroscopy reveals a slight redshift in all vibration modes with increasing cobalt content. Finally, photovoltaic measurements on solar cells constructed with (MA)2CoBr4 perovskite exhibit modest performance, and electrochemical measurements indicate that the compound with the composition (MA)2Zn0.3Co0.7Br4 exhibits the highest current for electrochemical water reduction during oxygen evolution.
Collapse
Affiliation(s)
- Natalí Navarro
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1240000, Chile
| | - Claudia Núñez
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1240000, Chile
| | - Darío Espinoza
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1240000, Chile
| | - Karem Gallardo
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1240000, Chile
| | - Ivan Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda. Universidad de Antofagasta 02800, Antofagasta 1240000, Chile
| | - Rodrigo Castillo
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1240000, Chile
| |
Collapse
|
3
|
Tang YL, Bai GF, Tang J, Xu L. First principles study on the stability and photoelectric properties of Cs2SeI6 under hydrostatic pressure. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Jonathan L, Diguna LJ, Samy O, Muqoyyanah M, Abu Bakar S, Birowosuto MD, El Moutaouakil A. Hybrid Organic-Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization. Polymers (Basel) 2022; 14:1059. [PMID: 35267884 PMCID: PMC8914961 DOI: 10.3390/polym14051059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Hybrid organic-inorganic perovskite (HOIP) photovoltaics have emerged as a promising new technology for the next generation of photovoltaics since their first development 10 years ago, and show a high-power conversion efficiency (PCE) of about 29.3%. The power-conversion efficiency of these perovskite photovoltaics depends on the base materials used in their development, and methylammonium lead iodide is generally used as the main component. Perovskite materials have been further explored to increase their efficiency, as they are cheaper and easier to fabricate than silicon photovoltaics, which will lead to better commercialization. Even with these advantages, perovskite photovoltaics have a few drawbacks, such as their stability when in contact with heat and humidity, which pales in comparison to the 25-year stability of silicon, even with improvements are made when exploring new materials. To expand the benefits and address the drawbacks of perovskite photovoltaics, perovskite-silicon tandem photovoltaics have been suggested as a solution in the commercialization of perovskite photovoltaics. This tandem photovoltaic results in an increased PCE value by presenting a better total absorption wavelength for both perovskite and silicon photovoltaics. In this work, we summarized the advances in HOIP photovoltaics in the contact of new material developments, enhanced device fabrication, and innovative approaches to the commercialization of large-scale devices.
Collapse
Affiliation(s)
- Luke Jonathan
- Department of Renewable Energy Engineering, Prasetiya Mulya University, Kavling Edutown I.1, Jl. BSD Raya Utama, BSD City, Tangerang 15339, Indonesia; (L.J.); (L.J.D.)
| | - Lina Jaya Diguna
- Department of Renewable Energy Engineering, Prasetiya Mulya University, Kavling Edutown I.1, Jl. BSD Raya Utama, BSD City, Tangerang 15339, Indonesia; (L.J.); (L.J.D.)
| | - Omnia Samy
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Muqoyyanah Muqoyyanah
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; (M.M.); (S.A.B.)
| | - Suriani Abu Bakar
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; (M.M.); (S.A.B.)
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Amine El Moutaouakil
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
5
|
Sun J, Yang Z, Li L, Zhang Y, Zou G. Highly stable halide perovskite with Na incorporation for efficient photocatalytic degradation of organic dyes in water solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50813-50824. [PMID: 33969454 DOI: 10.1007/s11356-021-14188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
To overcome water instability and low photocatalytic activity of lead-free halide perovskite for the degradation of organic dyes, we report a novel photocatalyst of lead-free halide perovskite with Na incorporation and employ it for the photocatalytic degradation of organic dyes in water solution under visible light irradiation. The main purpose of this work is to confirm the feasibility of lead-free halide perovskite with Na incorporation for improving the photocatalytic efficiency and recyclability in water solution and further to explore the mechanism behind the enhancement of photocatalytic performance after Na incorporation. The results show that Cs2Ag0.60Na0.40InCl6 can increase the dye degradation rate by at least 50% than the lead-free halide perovskite (Cs2AgInCl6) and the photocatalyst of Ag substituted by Na (Cs2NaInCl6). The degradation efficiency of rhodamine 6G catalyzed by Cs2Ag0.60Na0.40InCl6 reaches 94.94% over 60 min, which is 72% higher than that catalyzed by Cs2NaInCl6 and 27% higher than that catalyzed by Cs2AgInCl6. What's more, the degradation efficiency of methyl orange catalyzed by Cs2Ag0.60Na0.40InCl6 is 90.39% within 150 min, which is 66% higher than that catalyzed by Cs2NaInCl6 and 54% higher than that catalyzed by Cs2AgInCl6. Moreover, the photocatalyst of Cs2Ag0.60Na0.40InCl6 exhibits a desirable recyclability by water exposure, retaining the degradation efficiency over 90% after five cycles. The strengthened photocatalytic performance in the presence of Cs2Ag0.60Na0.40InCl6 is ascribed to an increase of radiative recombination rate and an improvement of average lifetime to 204 ns since an appropriate Na incorporation at the atomic ratio of Na/Ag=4:6 breaks the original crystal lattice and meanwhile increases the electron and hole overlap. The work proves a great potential of halide perovskite with Na incorporation for the highly efficient photocatalytic degradation of organic dyes in water solution.
Collapse
Affiliation(s)
- Jifu Sun
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
| | - Zhijuan Yang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
| | - Longzhi Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
| | - Yue Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
| | - Guifu Zou
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
- College of Energy, Soochow University, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
6
|
Shalan AE, Mohammed MKA, Govindan N. Graphene assisted crystallization and charge extraction for efficient and stable perovskite solar cells free of a hole-transport layer. RSC Adv 2021; 11:4417-4424. [PMID: 35424396 PMCID: PMC8694363 DOI: 10.1039/d0ra09225h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/03/2021] [Indexed: 11/14/2022] Open
Abstract
In recent times, perovskite solar cells (PSCs) have been of wide interest in solar energy research, which has ushered in a new era for photovoltaic power sources through the incredible enhancement in their power conversion efficiency (PCE). However, several serious challenges still face their high efficiency: upscaling and commercialization of the fabricated devices, including long-term stability as well as the humid environment conditions of the functional cells. To overcome these obstacles, stable graphene (G) materials with tunable electronic features have been used to assist the crystallization as well as the charge extraction inside the device configuration. Nonetheless, the hole transport layer (HTL)-free PSCs based on graphene materials exhibit unpredictable results, including a high efficiency and long-term stability even in the conditions of an ambient air atmosphere. Herein, we combine graphene materials into a mesoporous TiO2 electron transfer layer (ETL) to improve the coverage and crystallinity of the perovskite material and minimize charge recombination to augment both the stability and efficiency of the fabricated mixed cation PSCs in ambient air, even in the absence of a HTL. Our results demonstrate that an optimized PSC in the presence of different percentages of graphene materials displays a PCE of up to 17% in the case of a G:TiO2 ETL doped with 1.5% graphene. With this coverage and crystallinity amendment approach, we show hysteresis-free and stable PSCs, with less decomposition after ∼3000 h of storage under a moist ambient atmosphere. This work focuses on the originalities of the materials, expenses, and the assembling of stable and effective perovskite solar cells.
Collapse
Affiliation(s)
- Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87 Helwan Cairo 11421 Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| | - Mustafa K A Mohammed
- Technical Engineering College, Middle Technical University Baghdad Iraq +9647719047121
| | - Nagaraj Govindan
- Department of Physics, Periyar University, P.G Extension Center Dharmapuri Tamil Nadu India
| |
Collapse
|
7
|
Goetz KP, Taylor AD, Hofstetter YJ, Vaynzof Y. Sustainability in Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1-17. [PMID: 33372760 DOI: 10.1021/acsami.0c17269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At a current value of 25.5%, perovskites have reached some of the highest power conversion efficiencies of all single-junction solar cell devices. Researchers, however, are questioning their readiness for the commercial market, citing reasons of the toxicity of the lead-based active layer and instability. Closer examination of the life cycle of perovskite solar cells reveals that there are more areas than just these which should be addressed in order to bring an environmentally friendly and sustainable technology to global use. In this review, we discuss these issues. Life cycle analyses show that high temperature processes, heavy use of organic solvents, and extensive use of certain materials can have high up and downstream consequences in terms of emissions, human and ecotoxicity. We further bring attention to the toxicity of the perovskites themselves, where the most direct analyses suggest that the lead cannot be considered totally safe, despite its small quantity and that replacements such as tin may be more toxic in certain scenarios. As a way to reduce the negative environmental impact, we highlight ways in which researchers have used encapsulation and recycling to extend the life of the entire unit and its components and to prevent lead leakage. We hope this review directs researchers toward new strategies to introduce a clean solar technology to the world.
Collapse
Affiliation(s)
- Katelyn P Goetz
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Alexander D Taylor
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Yvonne J Hofstetter
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Yana Vaynzof
- Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Technical University of Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| |
Collapse
|
8
|
Bai D, Wang H, Bai Y, Najar A, Saleh N, Wang L, Liu SF. ASnX
3
—Better than Pb‐based Perovskite. NANO SELECT 2020. [DOI: 10.1002/nano.202000172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dongliang Bai
- Shaanxi Normal University No. 620, West Chang'an Street, Chang'an district Xi'an Shaanxi 710119 China
| | - Haoxu Wang
- Shaanxi Normal University No. 620, West Chang'an Street, Chang'an district Xi'an Shaanxi 710119 China
- The University of Queensland, Queensland, Brisbane 4072 Australia
| | - Yang Bai
- The University of Queensland, Queensland, Brisbane 4072 Australia
| | - Adel Najar
- United Arab Emirates University Al Ain Abu Dhabi United Arab Emirates
| | - Na'il Saleh
- United Arab Emirates University Al Ain Abu Dhabi United Arab Emirates
| | - Lianzhou Wang
- The University of Queensland, Queensland, Brisbane 4072 Australia
| | - Shengzhong Frank Liu
- Shaanxi Normal University No. 620, West Chang'an Street, Chang'an district Xi'an Shaanxi 710119 China
- Dalian Institute of Chemical Physics Dalian China
| |
Collapse
|
9
|
Mohammed MKA, Dehghanipour M, Younis U, Shalan AE, Sakthivel P, Ravi G, Bhoite PH, Pospisil J. Improvement of the interfacial contact between zinc oxide and a mixed cation perovskite using carbon nanotubes for ambient-air-processed perovskite solar cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj04656f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
(a) The sandwich structure of the planar device based on the ZnO ETL and fully-processed in ambient air. (b) Significant improvement in the current density of the PSCs after using 1D carbon nanotubes in the ZnO ETLs.
Collapse
Affiliation(s)
| | - Masoud Dehghanipour
- Photonics Research Group
- Yazd University
- Yazd
- Iran
- Atomic and Molecular Group, Faculty of Physics
| | - Umer Younis
- Department of Materials Science and Engineering
- Peking University
- Beijing 100871
- China
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI)
- Helwan
- Egypt
- BCMaterials
- Basque Center for Materials
| | - P. Sakthivel
- Nanomaterials Laboratory
- Department of Physics
- Alagappa University
- Karaikudi
- India
| | - G. Ravi
- Nanomaterials Laboratory
- Department of Physics
- Alagappa University
- Karaikudi
- India
| | - Pravin H. Bhoite
- Department of Chemistry
- Shivaji University
- Kisan Veer Mahavidyalaya
- Wai
- India
| | - Jan Pospisil
- Faculty of Chemistry
- Brno University of Technology
- 612 00 Brno
- Czech Republic
| |
Collapse
|
10
|
The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance. ENERGIES 2019. [DOI: 10.3390/en13010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Halide perovskite solar cells (PSCs) are considered as one of the most promising candidates for the next generation solar cells as their power conversion efficiency (PCE) has rapidly increased up to 25.2%. However, the most efficient halide perovskite materials all contain toxic lead. Replacing the lead cation with environmentally friendly tin (Sn) is proposed as an important alternative. Today, the inferior performance of Sn-based PSCs mainly due to two challenging issues, namely the facile oxidation of Sn2+ to Sn4+ and the low formation energies of Sn vacancies. Two-dimensional (2D) halide perovskite, in which the large sized organic cations confine the corner sharing BX6 octahedra, exhibits higher formation energy than that of three-dimensional (3D) structure halide perovskite. The approach of mixing a small amount of 2D into 3D Sn-based perovskites was demonstrated as an efficient method to produce high performance perovskite films. In this review, we first provide an overview of key points for making high performance PSCs. Then we give an introduction to the physical parameters of 3D ASnX3 (MA+, FA+, and Cs+) perovskite and a photovoltaic device based on them, followed by an overview of 2D/3D halide perovskites based on ASnX3 (MA+ and FA+) and their optoelectronic applications. The current challenges and a future outlook of Sn-based PSCs are discussed in the end. This review will give readers a better understanding of the 2D/3D Sn-based PSCs.
Collapse
|
11
|
Ruggeri E, Anaya M, Gałkowski K, Delport G, Kosasih FU, Abfalterer A, Mackowski S, Ducati C, Stranks SD. Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead-Tin Perovskite Heterojunctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905247. [PMID: 31709688 DOI: 10.1002/adma.201905247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Indexed: 05/28/2023]
Abstract
Halide perovskites are emerging as valid alternatives to conventional photovoltaic active materials owing to their low cost and high device performances. This material family also shows exceptional tunability of properties by varying chemical components, crystal structure, and dimensionality, providing a unique set of building blocks for new structures. Here, highly stable self-assembled lead-tin perovskite heterostructures formed between low-bandgap 3D and higher-bandgap 2D components are demonstrated. A combination of surface-sensitive X-ray diffraction, spatially resolved photoluminescence, and electron microscopy measurements is used to reveal that microstructural heterojunctions form between high-bandgap 2D surface crystallites and lower-bandgap 3D domains. Furthermore, in situ X-ray diffraction measurements are used during film formation to show that an ammonium thiocyanate additive delays formation of the 3D component and thus provides a tunable lever to substantially increase the fraction of 2D surface crystallites. These novel heterostructures will find use in bottom cells for stable tandem photovoltaics with a surface 2D layer passivating the 3D material, or in energy-transfer devices requiring controlled energy flow from localized surface crystallites to the bulk.
Collapse
Affiliation(s)
- Edoardo Ruggeri
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Miguel Anaya
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Krzysztof Gałkowski
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5th Grudziądzka St., 87-100, Toruć, Poland
| | - Géraud Delport
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Felix Utama Kosasih
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Anna Abfalterer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Sebastian Mackowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5th Grudziądzka St., 87-100, Toruć, Poland
| | - Caterina Ducati
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
12
|
Liao M, Yu BB, Jin Z, Chen W, Zhu Y, Zhang X, Yao W, Duan T, Djerdj I, He Z. Efficient and Stable FASnI 3 Perovskite Solar Cells with Effective Interface Modulation by Low-Dimensional Perovskite Layer. CHEMSUSCHEM 2019; 12:5007-5014. [PMID: 31468722 DOI: 10.1002/cssc.201902000] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+ , leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low-dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]-phenyl-C61 -butyricacid methyl) in the inverted planar device structure of the ITO (indium-doped tin oxide)/PEDOT:PSS [poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]-phenyl-C61 -butyricacid methyl (PCBM)/BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low-dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P.R. China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
| | - Bin-Bin Yu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
| | - Zhixin Jin
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
| | - Wei Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
| | - Yudong Zhu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
| | - Xusheng Zhang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
| | - Weitang Yao
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P.R. China
| | - Tao Duan
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P.R. China
| | - Igor Djerdj
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8-A, HR-31000, Osijek, Croatia
| | - Zhubing He
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, 518055, Guangdong, P.R. China
| |
Collapse
|
13
|
Shi R, Long R. Hole Localization Inhibits Charge Recombination in Tin-Lead Mixed Perovskites: Time-Domain ab Initio Analysis. J Phys Chem Lett 2019; 10:6604-6612. [PMID: 31608643 DOI: 10.1021/acs.jpclett.9b02786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using time domain density functional theory combined with nonadiabatic molecular dynamics, we demonstrate that the Sn dopants favor forming localized hole states with different extent at low and high doping concentrations, mimicking the small and large polarons, while retain the electron wave functions comparable with the pristine system, leading to nonadiabatic coupling decreasing by a factor of 45% and 38% and bandgap reduction by 0.04 and 0.27 eV, respectively. Furthermore, replacing heavier Pb with lighter Sn increases atomic fluctuations and accelerates loss of quantum coherence, in particular even faster at higher Sn doping concentration. As a result, the interplay among the bandgap, NA coupling, and decoherence time delays the electron-hole recombination by a factor of 3.5 and 1.3 at low and high doping concentration. Our study reveals the atomistic mechanisms of suppressed recombination dependence on Sn doping concentration, providing a new way to design high performance mixed perovskites.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| |
Collapse
|