1
|
Doustkhah E, Kotb A, Tafazoli S, Balkan T, Kaya S, Hanaor DAH, Assadi MHN. Templated Synthesis of Exfoliated Porous Carbon with Dominant Graphitic Nitrogen. ACS MATERIALS AU 2023; 3:231-241. [PMID: 38089135 PMCID: PMC10176611 DOI: 10.1021/acsmaterialsau.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/27/2024]
Abstract
We present here a new approach for the synthesis of nitrogen-doped porous graphitic carbon (g-NC) with a stoichiometry of C6.3H3.6N1.0O1.2, using layered silicate as a hard sacrificial template. Autogenous exfoliation is achieved due to the heterostacking of 2D silicate and nitrogen-doped carbon layers. Micro- and meso-porosity is induced by melamine and cetyltrimethylammonium (C16TMA). Our density functional calculations and X-ray photoelectron spectroscopy (XPS) observations confirm that the most dominant nitrogen configuration in g-CN is graphitic, while pyridinic and pyrrolic nitrogens are thermodynamically less favored. Our large-scale lattice dynamics calculations show that surface termination with H and OH groups at pores accounts for the observed H and O in the composition of the synthesized g-NC. We further evaluate the electrocatalytic and the supercapacitance activities of g-NC. Interestingly, this material exhibits a specific capacitance of ca. 202 F g-1 at 1 A g-1, retaining 90% of its initial capacitance after 10,000 cycles.
Collapse
Affiliation(s)
- Esmail Doustkhah
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
| | - Ahmed Kotb
- Chemistry
Department, Faculty of Science, Al-Azhar
University, 71524 Assiut, Egypt
| | - Saeede Tafazoli
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
- Materials
Science and Engineering, Koç University, 34450 Sarıyer,
Istanbul, Turkey
| | - Timuçin Balkan
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
- n2STAR
Koç University Nanofabrication and Nanocharacterization Center
for Scientific and Technological Advanced Research, 34450 Sarıyer, Istanbul, Turkey
- Department
of Chemistry, Koç University, 34450 Sarıyer,
Istanbul, Turkey
| | - Sarp Kaya
- Koç
University Tüpraş Energy Center (KUTEM), 34450 Sarıyer,
Istanbul, Turkey
- Materials
Science and Engineering, Koç University, 34450 Sarıyer,
Istanbul, Turkey
- Department
of Chemistry, Koç University, 34450 Sarıyer,
Istanbul, Turkey
| | - Dorian A. H. Hanaor
- Fachgebiet
Keramische Werkstoffe, Technische Universität
Berlin, 10623 Berlin, Germany
| | - M. Hussein N. Assadi
- RIKEN
Center for Emergent Matter Science, 2−1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Perrot V, Roussey A, Benayad A, Veillerot M, Mariolle D, Solé-Daura A, Mellot-Draznieks C, Ricoul F, Canivet J, Quadrelli EA, Jousseaume V. ZIF-8 thin films by a vapor-phase process: limits to growth. NANOSCALE 2023; 15:7115-7125. [PMID: 37000615 DOI: 10.1039/d3nr00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks are a class of porous materials that show promising properties in the field of microelectronics. To reach industrial use of these materials, gas phase techniques are often preferred and were recently introduced. However, the thicknesses achieved are not sufficient, limiting further development. In this work, an improved gas phase process allowing ZIF-8 layer formation of several hundreds of nm using cyclic ligand/water exposures is described. Then, by a combination of in-depth surface analyses and molecular dynamics simulations, the presence and role of hydroxyl defects in the ZIF-8 layer to reach this thickness are established. At the same time, this study unveils an inherent limit of the method: thickness growth is consubstantial with defect repairing upon the crystallites ripening; such defect repairing eventually leads to the decrease of the pore window below the diffusion radius of the incoming linker, thus apparently capping the maximum MOF thickness observable for this type of material topology through this growth method.
Collapse
Affiliation(s)
- Virginie Perrot
- Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France.
- University of Lyon, Institut de Chimie de Lyon, IRCELYON UMR 5256-CNRS-Université Lyon 1, Institut de recherche sur la catalyse et l'environnement, Villeurbanne, France.
| | - Arthur Roussey
- Univ. Grenoble Alpes, CEA, LITEN, F-38000 Grenoble, France
| | - Anass Benayad
- Univ. Grenoble Alpes, CEA, LITEN, F-38000 Grenoble, France
| | - Marc Veillerot
- Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France.
| | - Denis Mariolle
- Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France.
| | - Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | - Jérôme Canivet
- University of Lyon, Institut de Chimie de Lyon, IRCELYON UMR 5256-CNRS-Université Lyon 1, Institut de recherche sur la catalyse et l'environnement, Villeurbanne, France.
| | - Elsje Alessandra Quadrelli
- University of Lyon, Institut de Chimie de Lyon, IRCELYON UMR 5256-CNRS-Université Lyon 1, Institut de recherche sur la catalyse et l'environnement, Villeurbanne, France.
| | | |
Collapse
|
3
|
Preparation of GO-based Cr-Zn bimetallic layered porous sulfide by ZIF template method for high performance supercapacitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Rom T, Kumar N, Agrawal A, Gaur A, Paul AK. Syntheses, crystal structures, topology and dual electronic behaviors of a family of amine-templated three- dimensional zinc-organophosphonate hybrid solids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Rom T, Agrawal A, Sarkar S, Mahata P, Kumar A, Paul AK. Organoamine Templated Multifunctional Hybrid Metal Phosphonate Frameworks: Promising Candidates for Tailoring Electrochemical Behaviors and Size-Selective Efficient Heterogeneous Lewis Acid Catalysis. Inorg Chem 2022; 61:9580-9594. [PMID: 35687505 DOI: 10.1021/acs.inorgchem.2c00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The successful discovery of novel multifunctional metal phosphonate framework materials that incorporate newer organoamines and their utilization as a potential electroactive material for energy storage applications (supercapacitors) and as efficient heterogeneous catalysts are the most enduring challenges at present. From this perspective, herein, four new inorganic-organic hybrid zinc organodiphosphonate materials, namely, [C5H14N2]2[Zn6(hedp)4] (I), [C5H14N2]0.5[Zn3(Hhedp) (hedp)]·2H2O (II), [C6H16N2][Zn3(hedp)2] (III), and [C10H24N4][Zn6(Hhedp)2(hedp)2] (IV) (H4hedp = 1-hydroxyethane 1,1-diphosphonic acid), have been synthesized through the introduction of different organoamines and then structurally analyzed using various techniques. The compounds (I-IV) possess a three-dimensional network through alternate connectivity of zinc ions and diphosphonate ligands, as confirmed using single-crystal X-ray diffraction. The investigations of electrochemical charge storage behaviors of the present compounds indicate that compound III exhibits a high specific capacitance of 190 F g-1 (76 C g-1) at 1 A g-1, while compound II shows an excellent cycling stability of 90.11% even after 5000 cycles at 5 A g-1 in the 6 M KOH solution. Further, the present materials have also been utilized as active heterogeneous Lewis acid catalysts in the ketalization reaction. The screening of various substrate scopes during the catalytic process confirms the size-selective heterogeneous catalytic nature of the framework compounds. To our utmost knowledge, such a size-selective heterogeneous Lewis acid catalytic behavior has been observed for the first time in the amine templated inorganic-organic hybrid framework family. Moreover, the excellent size-selective catalytic efficiencies with the d10 metal system and recyclability performances make the compounds (I-IV) more efficient and promising Lewis acid heterogeneous catalysts.
Collapse
Affiliation(s)
- Tanmay Rom
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| | - Anant Agrawal
- Department of Physics, National Institute of Technology, Kurukshetra 136119, India
| | - Sourav Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Ashavani Kumar
- Department of Physics, National Institute of Technology, Kurukshetra 136119, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| |
Collapse
|
6
|
Fu H, Gao B, Liu Z, Liu W, Wang Z, Wang M, Li J, Feng Z, Reza Kamali A. Electrochemical Performance of Honeycomb Graphene Prepared from Acidic Graphene Oxide Via a Chemical Expansion method. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Su TY, Lu GP, Sun KK, Zhang M, Cai C. ZIF-Derived Metal/N-Doped Porous Carbon Nanocomposites: Efficient Catalysts for Organic Transformations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02211c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, zeolitic imidazolate framework (ZIF)-derived metal/N-doped porous carbon nanocomposites (M@NCs) have emerged as a class of appealing heterogeneous catalysts applied in organic synthesis, and the striking features mainly involve low-cost...
Collapse
|
8
|
Manikandan R, Raj CJ, Moulton SE, Todorov TS, Yu KH, Kim BC. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Chemistry 2021; 27:669-682. [PMID: 32700787 DOI: 10.1002/chem.202003253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 11/10/2022]
Abstract
Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g-1 . As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp ) of 342 F g-1 at a specific current of 1 Ag-1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc ) of 191 F g-1 with a maximum specific energy of 21.48 Wh kg-1 and high specific power of 14 000 W kg-1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g-1 with considerable specific energy and power.
Collapse
Affiliation(s)
- Ramu Manikandan
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul, 04620, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.,Biomedical Engineering Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Todor Stoilo Todorov
- Department of Theory of Mechanisms and Machines, Faculty of Industrial Technology, Technical University of Sofia, Sofia, 1797, Bulgaria
| | - Kook Hyun Yu
- Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul, 04620, Republic of Korea
| | - Byung Chul Kim
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| |
Collapse
|