1
|
Xie Y, Wang Z, Xu M, Xiong H, Chen Y, Wang X, Yu Z, Zhou W, Tang S. A sulfur-modified pore-blocking method to enhance the electrocatalytic stability of carbon-supported platinum nanoparticles. CHEMSUSCHEM 2024; 17:e202301819. [PMID: 38288777 DOI: 10.1002/cssc.202301819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Indexed: 03/10/2024]
Abstract
Currently, the durability of electrode materials remains a big obstacle to the widespread adoption of proton exchange membrane fuel cells (PEMFCs). Herein thiourea and sodium dodecyl benzene sulfonate (SDS) were employed as sulfur source and carbon source to modify the pristine carbon black (Ketjen black EC300 J). A highly durable carbon supported Pt nanosized catalyst with higher platinum utilization for oxygen reduction reaction (ORR) in PEMFCs was produced by doping elemental sulfur into carbon supports and decreasing the carbon pore sizes and volume through a successive impregnation technique. The catalyst exhibits an initial activity of 0.167 A mgPt -1 at 0.90 V and demonstrates minimal activity loss after acceleration stress test (30,000 cycles of AST). The half-wave potential loss for representative sample (Pt/S-C-3) is only 14 mV with only 21.8 % ECSA decrease, 27.5 % MA loss and 5.9 % SA loss. A sintering test at various temperature shows a minor average size increase for sulfur-doped carbon (S-C) supported one (from 2.09 to 2.52 nm). In single-cell test, the MEA sample employing the platinum catalyst on modified carbon as cathode exhibited almost negligible performance loss after 30,000 cycles of AST.
Collapse
Affiliation(s)
- Yuhang Xie
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Zhengluo Wang
- Sinocat Environmental Protection Technology Co., LTD, Chengdu, 610500, P.R. China phone
| | - Mingjie Xu
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Hongxi Xiong
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Yonglin Chen
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Xiaohan Wang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Zelong Yu
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Weijiang Zhou
- Sinocat Environmental Protection Technology Co., LTD, Chengdu, 610500, P.R. China phone
| | - Shuihua Tang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| |
Collapse
|
2
|
On the viability of chitosan-derived mesoporous carbons as supports for PtCu electrocatalysts in PEMFC. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Mazzucato M, Gavioli L, Balzano V, Berretti E, Rizzi GA, Badocco D, Pastore P, Zitolo A, Durante C. Synergistic Effect of Sn and Fe in Fe-N x Site Formation and Activity in Fe-N-C Catalyst for ORR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54635-54648. [PMID: 36468946 PMCID: PMC9756292 DOI: 10.1021/acsami.2c13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Iron-nitrogen-carbon (Fe-N-C) materials emerged as one of the best non-platinum group material (non-PGM) alternatives to Pt/C catalysts for the electrochemical reduction of O2 in fuel cells. Co-doping with a secondary metal center is a possible choice to further enhance the activity toward oxygen reduction reaction (ORR). Here, classical Fe-N-C materials were co-doped with Sn as a secondary metal center. Sn-N-C according to the literature shows excellent activity, in particular in the fuel cell setup; here, the same catalyst shows a non-negligible activity in 0.5 M H2SO4 electrolyte but not as high as expected, meaning the different and uncertain nature of active sites. On the other hand, in mixed Fe, Sn-N-C catalysts, the presence of Sn improves the catalytic activity that is linked to a higher Fe-N4 site density, whereas the possible synergistic interaction of Fe-N4 and Sn-Nx found no confirmation. The presence of Fe-N4 and Sn-Nx was thoroughly determined by extended X-ray absorption fine structure and NO stripping technique; furthermore, besides the typical voltammetric technique, the catalytic activity of Fe-N-C catalyst was determined and also compared with that of the gas diffusion electrode (GDE), which allows a fast and reliable screening for possible implementation in a full cell. This paper therefore explores the effect of Sn on the formation, activity, and selectivity of Fe-N-C catalysts in both acid and alkaline media by tuning the Sn/Fe ratio in the synthetic procedure, with the ratio 1/2 showing the best activity, even higher than that of the iron-only containing sample (jk = 2.11 vs 1.83 A g-1). Pt-free materials are also tested for ORR in GDE setup in both performance and durability tests.
Collapse
Affiliation(s)
- Marco Mazzucato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Luca Gavioli
- i-LAMP
& Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25133Brescia, Italy
| | - Vincenzo Balzano
- i-LAMP
& Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25133Brescia, Italy
| | - Enrico Berretti
- Institute
of Chemistry of Organometallic Compounds (ICCOM)—National Research
Council (CNR), Via Madonna
del Piano 10, 50019Sesto Fiorentino, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Andrea Zitolo
- Synchrotron
SOLEIL, L’Orme des Merisiers, BP 48 Saint Aubin, 91192Gif-sur-Yvette, France
| | - Christian Durante
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| |
Collapse
|
4
|
Chen S, Hu J, Zhou HQ, Yu F, Wu CM, Chung LH, Yu L, He J. Microenvironment Regulation of Metal–Organic Frameworks to Anchor Transition Metal Ions for the Electrocatalytic Hydrogen Evolution Reaction. Inorg Chem 2022; 61:19475-19482. [DOI: 10.1021/acs.inorgchem.2c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shaoru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua-Qun Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Fangying Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Can-Min Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
5
|
Huang WH, Chen Z, Wang HY, Wang L, Zhang HB, Wang H. Sponge-like hierarchical porous carbon decorated by Fe atoms for high-efficiency sodium storage and diffusion. Chem Commun (Camb) 2022; 58:4496-4499. [PMID: 35302120 DOI: 10.1039/d1cc07305b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hierarchical pores with accessible active sites in carbon are highly desired for enhancing sodium storage in sodium ion batteries (SIBs). However, it is still challenging to construct such materials with tunable architectures. Herein, a sponge-like 3D hierarchical porous Fe-doped carbon (Fe@NCS) was successfully assembled from an energetic framework. The continuous distribution of micro/meso/macro-pores in the range of 5 nm-2 μm and homogenously decorated Fe atoms were achieved, which greatly enhanced the storage and diffusion of Na+ ions and displayed brilliant high-rate capability and cycling stability.
Collapse
Affiliation(s)
- Wen-Huan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhuo Chen
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Hao-Yang Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Lei Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Hua-Bin Zhang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hong Wang
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Mazzucato M, Daniel G, Perazzolo V, Brandiele R, Rizzi GA, Isse AA, Gennaro A, Durante C. Mesoporosity and nitrogen doping: The leading effect in oxygen reduction reaction activity and selectivity at nitrogen‐doped carbons prepared by using polyethylene oxide‐block‐polystyrene as a sacrificial template. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marco Mazzucato
- Department of Chemical Sciences University of Padova Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padova Padova Italy
| | | | | | | | | | - Armando Gennaro
- Department of Chemical Sciences University of Padova Padova Italy
| | | |
Collapse
|
7
|
Zhang Y, Daniel G, Lanzalaco S, Isse AA, Facchin A, Wang A, Brillas E, Durante C, Sirés I. H 2O 2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127005. [PMID: 34479080 DOI: 10.1016/j.jhazmat.2021.127005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of β-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.
Collapse
Affiliation(s)
- Yanyu Zhang
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgia Daniel
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Facchin
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Christian Durante
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Thioacetamide-induced Ce 2O 2S nanostructures with tunable morphology for supercapacitors in wide pH range. J Colloid Interface Sci 2021; 611:82-92. [PMID: 34933193 DOI: 10.1016/j.jcis.2021.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022]
Abstract
Here, Rare-earth metal oxysulfide Ce2O2S nanostructures with tunable morphology are successfully grown on carbon cloth (CC) for supercapacitors (SCs) via a facile hydrothermal process followed by pyrolysis treatment for the first time. The feeding amount of sulfur source thioacetamide (TAA) plays an important role in the formation of Ce2O2S nanostructures with tunable morphology. Adjusting TAA feeding amount from 0.5 to 1.0, 1.5, and 2.0 g, the morphology of the resulted Ce2O2S nanostructure can change from pine bark-like agglomerated nanoparticles to fan-shaped nanosheets with edged branches, cuttlefish-like nanostructure with long terminal whiskers and polygon prism with spikes. Among them, Ce2O2S/CC-1.0 g TAA nanostructure with largest specific surface area and abundant mesopores exhibits a high specific capacitance of 670, 321.5 or 588.3 mF cm-2 at 1 mA cm-2 in an acid, neutral or alkaline electrolyte, respectively. Moreover, Ce2O2S/CC-1.0 g TAA electrode delivers excellent cycling stability with high capacitance retention of 93% after 5000 cycles in alkaline electrolyte. Our findings present a new strategy to fabricate rare-earth metal oxysulfide Ce2O2S nanostructures with controllable morphology and systematically reveal their electrochemical performance for SCs, moreover, provide new perspectives for boosting the preparation and application of metal oxysulfides in energy storage.
Collapse
|
9
|
Mazzucato M, Durante C. How determinant is the iron precursor ligand in Fe-N-C single-site formation and activity for oxygen reduction reaction? Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Daniel G, Mazzucato M, Brandiele R, De Lazzari L, Badocco D, Pastore P, Kosmala T, Granozzi G, Durante C. Sulfur Doping versus Hierarchical Pore Structure: The Dominating Effect on the Fe-N-C Site Density, Activity, and Selectivity in Oxygen Reduction Reaction Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42693-42705. [PMID: 34468127 PMCID: PMC8447183 DOI: 10.1021/acsami.1c09659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen doping has been always regarded as one of the major factors responsible for the increased catalytic activity of Fe-N-C catalysts in the oxygen reduction reaction, and recently, sulfur has emerged as a co-doping element capable of increasing the catalytic activity even more because of electronic effects, which modify the d-band center of the Fe-N-C catalysts or because of its capability to increase the Fe-Nx site density (SD). Herein, we investigate in detail the effect of sulfur doping of carbon support on the Fe-Nx site formation and on the textural properties (micro- and mesopore surface area and volume) in the resulting Fe-N-C catalysts. The Fe-N-C catalysts were prepared from mesoporous carbon with tunable sulfur doping (0-16 wt %), which was achieved by the modulation of the relative amount of sucrose/dibenzothiophene precursors. The carbon with the highest sulfur content was also activated through steam treatment at 800 °C for different durations, which allowed us to modulate the carbon pore volume and surface area (1296-1726 m2 g-1). The resulting catalysts were tested in O2-saturated 0.5 M H2SO4 electrolyte, and the site density (SD) was determined using the NO-stripping technique. Here, we demonstrate that sulfur doping has a porogenic effect increasing the microporosity of the carbon support, and it also facilitates the nitrogen fixation on the carbon support as well as the formation of Fe-Nx sites. It was found that the Fe-N-C catalytic activity [E1/2 ranges between 0.609 and 0.731 V vs reversible hydrogen electrode (RHE)] does not directly depend on sulfur content, but rather on the microporous surface and therefore any electronic effect appears not to be determinant as confirmed by X-ray photoemission spectroscopy (XPS). The graph reporting Fe-Nx SD versus sulfur content assumes a volcano-like shape, where the maximum value is obtained for a sulfur/iron ratio close to 18, i.e., a too high or too low sulfur doping has a detrimental effect on Fe-Nx formation. However, it was highlighted that the increase of Fe-Nx SD is a necessary but not sufficient condition for increasing the catalytic activity of the material, unless the textural properties are also optimized, i.e., there must be an optimized hierarchical porosity that facilitates the mass transport to the active sites.
Collapse
|
11
|
Abstract
The development of platinum group metal-free (PGM-free) electrocatalysts derived from cheap and environmentally friendly biomasses for oxygen reduction reaction (ORR) is a topic of relevant interest, particularly from the point of view of sustainability. Fe-nitrogen-doped carbon materials (Fe-N-C) have attracted particular interest as alternative to Pt-based materials, due to the high activity and selectivity of Fe-Nx active sites, the high availability and good tolerance to poisoning. Recently, many studies focused on developing synthetic strategies, which could transform N-containing biomasses into N-doped carbons. In this paper, chitosan was employed as a suitable N-containing biomass for preparing Fe-N-C catalyst in virtue of its high N content (7.1%) and unique chemical structure. Moreover, the major application of chitosan is based on its ability to strongly coordinate metal ions, a precondition for the formation of Fe-Nx active sites. The synthesis of Fe-N-C consists in a double step thermochemical conversion of a dried chitosan hydrogel. In acidic aqueous solution, the preparation of physical cross-linked hydrogel allows to obtain sophisticated organization, which assure an optimal mesoporosity before and after the pyrolysis. After the second thermal treatment at 900 °C, a highly graphitized material was obtained, which has been fully characterized in terms of textural, morphological and chemical properties. RRDE technique was used for understanding the activity and the selectivity of the material versus the ORR in 0.5 M H2SO4 electrolyte. Special attention was put in the determination of the active site density according to nitrite electrochemical reduction measurements. It was clearly established that the catalytic activity expressed as half wave potential linearly scales with the number of Fe-Nx sites. It was also established that the addition of the iron precursor after the first pyrolysis step leads to an increased activity due to both an increased number of active sites and of a hierarchical structure, which improves the access to active sites. At the same time, the increased graphitization degree, and a reduced density of pyrrolic nitrogen groups are helpful to increase the selectivity toward the 4e- ORR pathway.
Collapse
|
12
|
Zhu Y, Deng F, Qiu S, Ma F, Zheng Y, Lian R. Enhanced electro-Fenton degradation of sulfonamides using the N, S co-doped cathode: Mechanism for H 2O 2 formation and pollutants decay. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123950. [PMID: 33264994 DOI: 10.1016/j.jhazmat.2020.123950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Facing low reactivity/selectivity of oxygen reduction reaction (ORR) in electro-Fenton (EF), N, S atoms were introduced into carbon-based cathode. "End-on" O2 adsorption was achieved by adjusting electronic nature via N doping, while *OOH binding capability was tuned by spin density variation via S doping. Results showed the optimized N, S co-doped cathode presented a 42.47% improvement of H2O2 accumulation (7.95 ± 0.02 mg L-1 cm-2). According to density functional theory (DFT), N, S co-doped structure favored the "end-on" O2 adsorption as adsorption energy dropped to - 2.24 eV. Moreover, O-O/C-O bond lengths variation proved a possibility for *OOH desorption. The elaborated cathode was used in EF for sulfonamides (SAs) decay. A 100% removal rate of sulfadiazine (SDZ), sulfathiazole (STZ) and sulfadimethoxine (SDM) was achieved within 60 min, among which SDZ tended to be degraded easily. Because the absolute hardness (η) of those pollutants is ranked as follows: ηSDM> ηSTZ> ηSDZ. Degradation pathways were proposed based on the detected byproducts, along with toxicity was evaluated by ecological structure-activity relationship (ECOSAR) program. Results showed that toxic intermediates generated were reduced or even disappeared. EF with N, S co-doped cathode provides a promising process for antibiotics wastewater treatment.
Collapse
Affiliation(s)
- Yingshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yanshi Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ruqian Lian
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, PR China
| |
Collapse
|
13
|
Perazzolo V, Daniel G, Brandiele R, Picelli L, Rizzi GA, Isse AA, Durante C. PEO‐b‐PS Block Copolymer Templated Mesoporous Carbons: A Comparative Study of Nitrogen and Sulfur Doping in the Oxygen Reduction Reaction to Hydrogen Peroxide. Chemistry 2020; 27:1002-1014. [DOI: 10.1002/chem.202003355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Valentina Perazzolo
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Giorgia Daniel
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Riccardo Brandiele
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Luca Picelli
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
14
|
Upcycling of polyurethane into iron-nitrogen-carbon electrocatalysts active for oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Brandiele R, Poli F, Picelli L, Pilot R, Rizzi GA, Soavi F, Durante C. Nitrogen‐Doped Mesoporous Carbon Electrodes Prepared from Templating Propylamine‐Functionalized Silica. ChemElectroChem 2020. [DOI: 10.1002/celc.202000098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Riccardo Brandiele
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| | - Federico Poli
- Department of ChemistryAlma Mater Studiorum University of Bologna Via Selmi 2, 40126 Bologna Italy
| | - Luca Picelli
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| | - Roberto Pilot
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
- Consorzio INSTM via G. Giusti 9 50121 Firenze Italy
| | - Gian Andrea Rizzi
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| | - Francesca Soavi
- Department of ChemistryAlma Mater Studiorum University of Bologna Via Selmi 2, 40126 Bologna Italy
| | - Christian Durante
- Department of Chemical SciencesUniversity of Padova Via Marzolo, 1 36026 Padova Italy
| |
Collapse
|
16
|
Brandiele R, Amendola V, Guadagnini A, Rizzi GA, Badocco D, Pastore P, Isse AA, Durante C, Gennaro A. Facile synthesis of Pd3Y alloy nanoparticles for electrocatalysis of the oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|