1
|
Shilpa N, Pandikassala A, Krishnaraj P, Walko PS, Devi RN, Kurungot S. Co-Ni Layered Double Hydroxide for the Electrocatalytic Oxidation of Organic Molecules: An Approach to Lowering the Overall Cell Voltage for the Water Splitting Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16222-16232. [PMID: 35377138 DOI: 10.1021/acsami.2c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxidation of simple organic molecules offers a promising strategy to combat the sluggish kinetics of the water oxidation reaction (WOR). The low potential requirement, inhibition of the crossover of gases, and formation of value-added products at the anode are benefits of the electrocatalytic oxidation of organic molecules. Herein, we developed cobalt-nickel-based layered double hydroxide (LDH) as a robust material for the electrocatalytic oxidation of alcohols and urea at the anode, replacing the WOR. A facile synthesis protocol to form LDHs with different ratios of Co and Ni is adapted. It demonstrates that the reactants could be efficiently oxidized to concomitant chemical products at the anode. The half-cell study shows an onset potential of 1.30 V for benzyl alcohol oxidation reaction (BAOR), 1.36 V for glycerol oxidation reaction (GOR), 1.33 V for ethanol oxidation reaction (EOR), and 1.32 V for urea oxidation reaction (UOR) compared with 1.53 V for WOR. Notably, the hybrid electrolyzer in a full-cell configuration significantly reduces the overall cell voltage at a 20 mA cm-2 current density by ∼15% while coupling with the BAOR, EOR, and GOR and ∼12% with the UOR as the anodic half-cell reaction. Furthermore, the efficiency of hydrogen generation remains unhampered with the types of oxidation reactions (alcohols and urea) occurring at the anode. This work demonstrates the prospects of lowering the overall cell voltage in the case of a water electrolyzer by integrating the hydrogen evolution reaction with suitable organic molecule oxidation.
Collapse
Affiliation(s)
- Nagaraju Shilpa
- Physical and Materials Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune 411008, India
| | - Ajmal Pandikassala
- Physical and Materials Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Perayil Krishnaraj
- Physical and Materials Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune 411008, India
- School of Chemical Sciences, Kannur University, Payyanur 670327, India
| | - Priyanka S Walko
- Catalysis Division, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune 411008, India
| | - R Nandini Devi
- Catalysis Division, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune 411008, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Yang XF, Li J, Yang XM, Li CX, Li F, Li B, He JB. High-Performance Bifunctional Ni-Fe-S Catalyst in situ Synthesized within Graphite Intergranular Nanopores for Overall Water Splitting. CHEMSUSCHEM 2021; 14:3131-3138. [PMID: 34076965 DOI: 10.1002/cssc.202100891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Low-cost and efficient bifunctional catalysts are urgently needed for overall water splitting used in large-scale energy storage. In this study, we develop a nickel and iron (di)sulfide (Ni-Fe-S) composite catalyst that is in situ synthesized and fixed within the intergranular nanopores inside high pure polycrystalline graphite. Two precursor solutions (reactants) may permeate the graphite intergranular pores to a depth of more than 3.5 mm. The nanoscale pores serve as an array of nanoreactors for the synthesis of the Ni-Fe-S nanoparticles under conditions much milder than usual. The prepared catalyst efficiently catalyzes both the hydrogen and oxygen evolution reactions (HER and OER) in 1.0 M KOH. It delivers a current density of 400 mA cm-2 at a full cell voltage of around 2.3 V without considerable activity decay over 24 h electrolysis. The active species of the catalyst are different for the HER and OER and discussed accordingly. The synthesis strategy based on the nanopores in a monolithic conductive substrate proves to be a simple, efficient, and promising way to prepare electrocatalysts that are cheap, abundant, and industrially attractive.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Xin-Ming Yang
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Chao-Xiong Li
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Jieshou, 236500, P.R. China
| |
Collapse
|
3
|
Maiti A. Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Trans 2020; 49:11430-11450. [PMID: 32662489 DOI: 10.1039/d0dt01469a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, the production of hydrogen and oxygen focuses on renewable energy techniques and sustainable energy storage. A substantial challenge is to extend low-cost electrocatalysts consisting of earth-abundant resources, prepared by straightforward approaches that display high intrinsic activity compared to noble metals. The expansion of bifunctional catalysts in alkaline electrolytes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has become very crucial in recent times. Herein, the recent progress in cobalt-based HER-OER electrocatalysts has been are brushed up and numerous bifunctional cobalt-based catalysts such as cobalt-oxides, phosphides, sulfides, selenides, nitrides, borides, carbides, perovskites, and MOF-based cobalt analogs have been investigated in detail. Specifically, much more attention has been paid to their structural variation, bifunctional activity, overpotential of the overall system, and stability. Cobalt-based catalysts with lower cell voltage, remarkable durability, and unique electronic structures, offer a new perspective in energy-related fields. In recent years, cobalt-based analogs with diagnostic facilities have been introduced due to their electronic structures, tunable d band structures, and tailorable active sites. This perspective also elucidates the present issues, promising ideas, and future forecasts for cobalt-based catalysts. The critical aspects of cobalt-based catalysts and the numerous opportunities, as discussed at the end, can possibly enrich the sustainable energy field.
Collapse
Affiliation(s)
- Anurupa Maiti
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India.
| |
Collapse
|
4
|
Qiao M, Wang Y, Mamat X, Chen A, Zou G, Li L, Hu G, Zhang S, Hu X, Voiry D. Rational Design of Hierarchical, Porous, Co-Supported, N-Doped Carbon Architectures as Electrocatalyst for Oxygen Reduction. CHEMSUSCHEM 2020; 13:741-748. [PMID: 31846205 DOI: 10.1002/cssc.201903053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Developing highly active nonprecious-metal catalysts for the oxygen reduction reaction (ORR) is of great significance for reducing the cost of fuel cells. 3D-ordered porous structures could substantially improve the performance of the catalysts because of their excellent mass-diffusion properties and high specific surface areas. Herein, ordered porous ZIF-67 was prepared by forced molding of a polystyrene template, and Co-supported, N-doped, 3D-ordered porous carbon (Co-NOPC) was obtained after further carbonization. Co-NOPC exhibited excellent performance for the ORR in an alkaline medium with a half-wave potential of 0.86 V vs. reversible hydrogen electrode (RHE), which is higher than that of the state-of-the-art Pt/C (0.85 V vs. RHE). Moreover, the substantially improved catalytic performance of Co-NOPC compared with Co-supported, N-doped carbon revealed the key role of its hierarchical porosity in boosting the ORR. Co-NOPC also exhibited a close-to-ideal four-electron transfer path, long-term durability, and resistance to methanol penetration, which make it promising for large-scale application.
Collapse
Affiliation(s)
- Mengfei Qiao
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Wang
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, P. R. China
| | - Xamxikamar Mamat
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, P. R. China
| | - Anran Chen
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Guoan Zou
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, P. R. China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Guangzhi Hu
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, 830011, P. R. China
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, P. R. China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34095, Montpellier CEDEX 5, France
| |
Collapse
|