1
|
Barpaga D, King JA, Kothandaraman J, Lopez JS, Moskowitz BM, Hubbard ML, Zheng RF, Malhotra D, Koech PK, Zwoster AJ, Dagle RA, Heldebrant DJ. Single-Pass Demonstration of Integrated Capture and Catalytic Conversion of CO 2 from Simulated Flue Gas to Methanol in a Water-Lean Carbon Capture Solvent. ACS OMEGA 2024; 9:46247-46262. [PMID: 39583732 PMCID: PMC11579938 DOI: 10.1021/acsomega.4c06919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Here, we demonstrate an integrated semibatch simultaneous CO2 capture and conversion to methanol process using a water-lean solvent, N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA), that serves as both the capture solvent and subsequent condensed-phase medium for the catalytic hydrogenation of CO2. CO2 is captured from simulated coal-derived flue gas at a target >90 mol % capture efficiency, with a continuous slipstream of CO2-rich solvent delivered to a fixed bed catalytic reactor for catalytic hydrogenation. A single-pass conversion rate >60 C-mol % and selectivity >80 C-mol % are observed for methanol at relatively low temperatures (<200 °C) in the condensed phase of the carbon capture solvent. Hydrogenation products also include higher alcohols (e.g., ethanol and propanol) and hydrocarbons (e.g., methane and ethane), suggesting that multiple products could be made offering adaptability with varied CO2-derived products. Catalyst activity and selectivity are directly impacted by the water content in the capture solvent. Anhydrous operation provides high catalyst activity and productivity, suggesting that water management will be a critical parameter in real-world operation. Ultimately, we conclude that the integrated capture and catalytic hydrogenation of CO2 are chemically viable and potentially more energetically efficient and cost-effective than conventional separate capture and conversion approaches.
Collapse
Affiliation(s)
- Dushyant Barpaga
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Jaelynne A. King
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | | | - Johnny S. Lopez
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Benjamin M. Moskowitz
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Michael L. Hubbard
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Richard F. Zheng
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Deepika Malhotra
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Phillip K. Koech
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Andy J. Zwoster
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Robert A. Dagle
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - David J. Heldebrant
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Patil T, Naji A, Mondal U, Pandey I, Unnarkat A, Dharaskar S. Sustainable methanol production from carbon dioxide: advances, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44608-44648. [PMID: 38961021 DOI: 10.1007/s11356-024-34139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.
Collapse
Affiliation(s)
- Tushar Patil
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Arkan Naji
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Ujjal Mondal
- Sustainability Centre of Excellence, Larsen & Toubro Technology Services, Vadodara, Gujarat, 382426, India
| | - Indu Pandey
- Larsen & Toubro Technology Services, Larsen & Toubro Tech Park, Byatarayanapura, Bengaluru, Karnataka, 560092, India
| | - Ashish Unnarkat
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Swapnil Dharaskar
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India.
| |
Collapse
|
3
|
Kamada K, Jung J, Yamada C, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO 2 Reduction Using an Osmium Complex as a Panchromatic Self-Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angew Chem Int Ed Engl 2024; 63:e202403886. [PMID: 38545689 DOI: 10.1002/anie.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/24/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Chihiro Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennoudai, 305-8571, Tsukuba, Ibaraki, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| |
Collapse
|
4
|
Misra D, Di Liberto G, Pacchioni G. CO 2 electroreduction on single atom catalysts: the role of the DFT functional. Phys Chem Chem Phys 2024; 26:10746-10756. [PMID: 38516878 DOI: 10.1039/d4cp00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
One key process involving single atom catalysts (SACs) is the electroreduction of CO2 to fuels. The chemistry of SACs differs largely from that of extended catalytic surfaces, presenting an opportunity to improve the ability to activate very stable molecules, such as CO2. In this work, we performed a density functional theory (DFT) study of CO2 activation on a series of SACs, focusing on the role played by the adopted functional in activity predictions. The role of the exchange-correlation functional has been widely investigated in heterogenous catalysts, but it is less explored in SACs. We tested the widely used PBE and the PBE+U corrected functionals against the more robust hybrid PBE0 functional. The results show that PBE is reliable if one is interested in qualitative predictions, but it leads to some inaccuracies in other cases. A possible way to attenuate this effect is by adopting the PBE+U framework, as it gives results that are very similar to PBE0 at an acceptable computational cost. The results of this study further underline the importance of the computational framework adopted in predicting the activity of SACs. The work suggests that one needs to go beyond PBE for quantitative estimates, an important consideration when performing screening and high-throughput calculations.
Collapse
Affiliation(s)
- Debolina Misra
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, Milano 20125, Italy.
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, Milano 20125, Italy.
| |
Collapse
|
5
|
Thanh HT, Le OK, Chihaia V, Son DN. Carbon dioxide conversion to methanol on a PdCo bimetallic catalyst. Phys Chem Chem Phys 2024; 26:3963-3973. [PMID: 38221854 DOI: 10.1039/d3cp05146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The CO2 conversion to methanol (CO2-to-CH3OH conversion) is a promising way to resolve greenhouse gas emissions and global energy shortage. Many catalysts are of interest in improving the efficiency of the conversion reaction. The PdCo alloy is a potential catalyst, but no research is available to clarify the CO2-to-CH3OH reaction mechanism of this alloy. Here, using density functional theory combined with the thermodynamic model, we elucidated the reaction mechanism of the CO2-to-CH3OH conversion on the Pd-skin/PdCo alloy catalyst via thermo- and electro-catalytic processes. The adsorption of CO2-to-CH3OH intermediates with key stable intermediates such as HCOO, COOH, and CO was explored. Free-energy diagrams for the CO2-to-CH3OH conversion were constructed. We found that the formate pathway is the most favorable one. The charge transfer plays a crucial role in the substrate-adsorbate interaction via electronic structure analysis. This work provides valuable guidance for designing Pd-based catalysts for the CO2-to-CH3OH conversion.
Collapse
Affiliation(s)
- Huynh Tat Thanh
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
- An Giang University, VNU-HCM, 18 Ung Van Khiem street, Dong Xuyen ward, Long Xuyen City, An Giang Province, Vietnam
| | - Ong Kim Le
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
| | - Viorel Chihaia
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Splaiul Independentei 202, Sector 6, 060021 Bucharest, Romania
| | - Do Ngoc Son
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Mosrati J, Ishida T, Mac H, Al-Yusufi M, Honma T, Parliniska-Wojtan M, Kobayashi Y, Klyushin A, Murayama T, Abdel-Mageed AM. Low-Temperature Hydrogenation of CO 2 to Methanol in Water on ZnO-Supported CuAu Nanoalloys. Angew Chem Int Ed Engl 2023:e202311340. [PMID: 37856669 DOI: 10.1002/anie.202311340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Optimizing processes and materials for the valorization of CO2 to hydrogen carriers or platform chemicals is a key step for mitigating global warming and for the sustainable use of renewables. We report here on the hydrogenation of CO2 in water on ZnO-supported CuAu nanoalloys, based on ≤7 mol % Au. Cux Auy /ZnO catalysts were characterized using 197 Au Mössbauer, in situ X-ray absorption (Au LIII - and Cu K-edges), and ambient pressure X-ray photoelectron (APXP) spectroscopic methods together with X-ray diffraction and high-resolution electron microscopy. At 200 °C, the conversion of CO2 showed a significant increase by 34 times (from 0.1 to 3.4 %) upon increasing Cu93 Au7 loading from 1 to 10 wt %, while maintaining methanol selectivity at 100 %. Limited CO selectivity (4-6 %) was observed upon increasing temperature up to 240 °C but associated with a ≈3-fold increase in CO2 conversion. Based on APXPS during CO2 hydrogenation in an H2 O-rich mixture, Cu segregates preferentially to the surface in a mainly metallic state, while slightly charged Au submerges deeper into the subsurface region. These results and detailed structural analyses are topics of the present contribution.
Collapse
Affiliation(s)
- Jawaher Mosrati
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hung Mac
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| | - Mohammed Al-Yusufi
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
| | | | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494, Japan
| | | | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Ali M Abdel-Mageed
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| |
Collapse
|
7
|
Xie S, Li Z, Li H, Fang Y. Integration of carbon capture with heterogeneous catalysis toward methanol production: chemistry, challenges, and opportunities. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Hengde Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Kuznetsov NY, Maximov AL, Beletskaya IP. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Duan R, Qin W, Xiao X, Ma B, Zheng Z. Influence of Ag Metal Dispersion on the Catalyzed Reduction of CO 2 into Chemical Fuels over Ag-ZrO 2 Catalysts. ACS OMEGA 2022; 7:34213-34221. [PMID: 36188302 PMCID: PMC9520683 DOI: 10.1021/acsomega.2c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Metal/metal oxide catalysts reveal unique CO2 adsorption and hydrogenation properties in CO2 electroreduction for the synthesis of chemical fuels. The dispersion of active components on the surface of metal oxide has unique quantum effects, significantly affecting the catalytic activity and selectivity. Catalyst models with 25, 50, and 75% Ag covering on ZrO2, denoted as Ag4/(ZrO2)9, Ag8/(ZrO2)9, and Ag12/(ZrO2)9, respectively, were developed and coupled with a detailed investigation of the electronic properties and electroreduction processes from CO2 into different chemical fuels using density functional theory calculations. The dispersion of Ag can obviously tune the hybridization between the active site of the catalyst and the O atom of the intermediate species CH3O* derived from the reduction of CO2, which can be expected as the key intermediate to lead the reduction path to differentiation of generation of CH4 and CH3OH. The weak hybridization between CH3O* and Ag4/(ZrO2)9 and Ag12/(ZrO2)9 favors the further reduction of CH3O* into CH3OH. In stark contrast, the strong hybridization between CH3O* and Ag8/(ZrO2)9 promotes the dissociation of the C-O bond of CH3O*, thus leading to the generation of CH4. Results provide a fundamental understanding of the CO2 reduction mechanism on the metal/metal oxide surface, favoring novel catalyst rational design and chemical fuel production.
Collapse
|
10
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
11
|
Kumar A, Bhardwaj R, Mandal SK, Choudhury J. Transfer Hydrogenation of CO 2 and CO 2 Derivatives using Alcohols as Hydride Sources: Boosting an H 2-Free Alternative Strategy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Ritu Bhardwaj
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Sanajit Kumar Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
12
|
Wei D, Sang R, Moazezbarabadi A, Junge H, Beller M. Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System. JACS AU 2022; 2:1020-1031. [PMID: 35647600 PMCID: PMC9131476 DOI: 10.1021/jacsau.1c00489] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 05/03/2023]
Abstract
Recent developments of CO2 capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO2/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.
Collapse
|
13
|
Poormohammadian SJ, Bahadoran F, Vakili-Nezhaad GR. Recent progress in homogeneous hydrogenation of carbon dioxide to methanol. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The requirement of running a new generation of fuel production is inevitable due to the limitation of oil production from reservoirs. On the other hand, enhancing the CO2 concentration in the atmosphere brings global warming phenomenon and leads to catastrophic disasters such as drought and flooding. Conversion of carbon dioxide to methanol can compensate for the liquid fuel requirement and mitigate CO2 emissions to the atmosphere. In this review, we surveyed the recent works on homogeneous hydrogenation of CO2 to CH3OH and investigated the experimental results in detail. We categorized the CO2 hydrogenation works based on the environment of the reaction, including neutral, acidic, and basic conditions, and discussed the effects of solvents’ properties on the experimental results. This review provides a perspective on the previous studies in this field, which can assist the researchers in selecting the proper catalyst and solvent for homogenous hydrogenation of carbon dioxide to methanol.
Collapse
Affiliation(s)
| | - Farzad Bahadoran
- Gas Research Division , Research Institute of Petroleum Industry , West Blvd. of Azadi Sport Complex , 1485733111 , Tehran , Iran
| | - G. Reza Vakili-Nezhaad
- Petroleum and Chemical Engineering Department , College of Engineering, Sultan Qaboos University , 123 Muscat , Oman
| |
Collapse
|
14
|
Zhang Y, Mo Y, Cao Z. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO 2 Hydrogenation to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1002-1014. [PMID: 34935336 DOI: 10.1021/acsami.1c20230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing efficient and inexpensive main group catalysts for CO2 conversion and utilization has attracted increasing attention, as the conversion process would be both economical and environmentally benign. Here, based on the main group element Al, we designed several heterogeneous frustrated Lewis acid/base pair (FLP) catalysts and performed extensive first-principles calculations for the hydrogenation of CO2. These catalysts, including Al@N-Gr-1, Al@N-Gr-2, and Al@C2N, are composed of a single Al atom and two-dimensional (2D) N-doped carbon-based materials to form frustrated Al/C or Al/N Lewis acid/base pairs, which are all predicted to have high reactivity to absorb and activate hydrogen (H2). Compared with Al@N-Gr-1, both Al@N-Gr-2 and Al@C2N, especially Al@N-Gr-2, containing Al/N Lewis pairs exhibit better catalytic activity for CO2 hydrogenation with lower activation energies. CO2 hydrogenation on the three catalysts prefers to go through a three-step mechanism, i.e., the heterolytic dissociation of H2, followed by the transfer of the hydride near Al to CO2, and finally the activation of a second H2 molecule. Other IIIA group element (B and Ga)-embedded N-Gr-2 materials (B@N-Gr-2 and Ga@N-Gr-2) were also explored and compared. Both Al@N-Gr-2 and Ga@N-Gr-2 show higher catalytic activity for CO2 hydrogenation to HCOOH than B@N-Gr-2. However, the CO2 hydrogenation path on Ga@N-Gr-2 tends to follow a two-step mechanism, including H2 dissociation and subsequent hydrogen transfer. The present study provides a potential solution for CO2 hydrogenation by designing novel and effective FLP catalysts based on main group elements.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Kothandaraman J, Saavedra Lopez J, Jiang Y, Walter ED, Burton SD, Dagle RA, Heldebrant DJ. Integrated Capture and Conversion of CO 2 to Methane Using a Water-lean, Post-Combustion CO 2 Capture Solvent. CHEMSUSCHEM 2021; 14:4812-4819. [PMID: 34418303 DOI: 10.1002/cssc.202101590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Integrated carbon capture and conversion of CO2 into materials (IC3 M) is an attractive solution to meet global energy demand, reduce our dependence on fossil fuels, and lower CO2 emissions. Herein, using a water-lean post-combustion capture solvent, [N-(2-ethoxyethyl)-3-morpholinopropan-1-amine] (2-EEMPA), >90 % conversion of captured CO2 to hydrocarbons, mostly methane, is achieved in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and <15 bar H2 pressure). The catalytic performance was better in 2-EEMPA than in aqueous 5 m monoethanol amine (MEA). Operando nuclear magnetic resonance (NMR) study showed in situ formation of N-formamide intermediate, which underwent further hydrogenation to form methane and other higher hydrocarbons. Technoeconomic analyses (TEA) showed that the proposed integrated process can potentially improve the thermal efficiency by 5 % and reduce the total capital investment and minimum synthetic natural gas (SNG) selling price by 32 % and 12 %, respectively, compared to the conventional Sabatier process, highlighting the energetic and economic benefits of integrated capture and conversion. Methane derived from CO2 and renewable H2 sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach.
Collapse
Affiliation(s)
- Jotheeswari Kothandaraman
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - Johnny Saavedra Lopez
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - Yuan Jiang
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - Eric D Walter
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - Sarah D Burton
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - Robert A Dagle
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Advances Energy Systems, 902 Battelle Blvd, Richland, Washington, 99352, USA
| |
Collapse
|
17
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
18
|
Bai ST, Zhou C, Wu X, Sun R, Sels B. Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO 2 Capture and Hydrogenation to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, No.1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P.R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| | - Ruiyan Sun
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Bert Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee 3001, Belgium
| |
Collapse
|
19
|
Zhang W, Yao Y, Xie S, Gubsch K, Yang Y, Lan X, Lin H. Synergistic interaction between Cu and ZrO2 promotes ethyl formate hydrogenation to produce methanol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Kumar A, Eyyathiyil J, Choudhury J. Reduction of Carbon Dioxide with Ammonia-Borane under Ambient Conditions: Maneuvering a Catalytic Way. Inorg Chem 2021; 60:11684-11692. [PMID: 34270234 DOI: 10.1021/acs.inorgchem.1c01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the development of alternatives to the traditional catalytic hydrogenation of CO2 with gaseous H2, employing nongaseous H2 storage compounds as potential reductants for catalytic transfer hydrogenation of CO2 is promising. Ammonia-borane, due to its high hydrogen storage capacity (19.6 wt %), has been used for catalytic transfer hydrogenation of several organic unsaturated compounds. However, a similar protocol involving catalytic transfer hydrogenation of less reactive CO2 with NH3BH3 is yet to be realized experimentally. Herein, we demonstrate the first catalytic CO2 transfer hydrogenation process for generating formate salt with NH3BH3 under ambient conditions (1 atm and 30 °C) employing a cationic "Ir(III)-abnormal NHC" catalyst via an electrophilic NH3BH3 activation route. It exhibited an initial turnover frequency of 686 h-1 and a high turnover number (TON) of ≈1300 in just 4 h. Most significantly, the catalyst was durable enough to maintain long-term activity, and upon only periodic recharging of NH3BH3, it furnished a total TON of >4200 in 10 h.
Collapse
Affiliation(s)
- Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Jusaina Eyyathiyil
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
21
|
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plastic production has been increasing at enormous rates. Particularly, the socioenvironmental problems resulting from the linear economy model have been widely discussed, especially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the many production stages have not been discussed thoroughly. Regarding the manufacturing processes, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical transformations, explaining why first-generation petrochemical industries are among the top five most greenhouse gas (GHG)-polluting businesses. Consequently, the plastics market must pursue full integration with the circular economy approach, promoting the simultaneous recycling of plastic wastes and sequestration and reuse of CO2 through carbon capture and utilization (CCU) strategies, which can be employed for the manufacture of olefins (among other process streams) and reduction of fossil-fuel demands and environmental impacts. Considering the previous remarks, the present manuscript’s purpose is to provide a review regarding CO2 emissions, capture, and utilization in the plastics industry. A detailed bibliometric review of both the scientific and the patent literature available is presented, including the description of key players and critical discussions and suggestions about the main technologies. As shown throughout the text, the number of documents has grown steadily, illustrating the increasing importance of CCU strategies in the field of plastics manufacture.
Collapse
|
22
|
First Phenol Carboxylation with CO 2 on Carbon Nanostructured C@Fe-Al 2O 3 Hybrids in Aqueous Media under Mild Conditions. NANOMATERIALS 2021; 11:nano11010190. [PMID: 33451099 PMCID: PMC7828619 DOI: 10.3390/nano11010190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/25/2022]
Abstract
Novel hybrid materials with integrated catalytic properties and hydrophobic response, C@Fe–Al2O3 hybrid samples, were presented and tested as catalysts for phenol reaction in aqueous solutions at atmospheric pressure and mild temperature conditions, using CO2 as a feedstock. A series of carbon-coated γ-alumina pellets (C@Fe–Al2O3) were synthesized and characterized by TGA, Brunauer–Emmett–Teller (BET) method, Raman spectroscopy, SEM, TEM, and XPS in order to get comprehensive knowledge of their properties at the nanoscale and relate them with their catalytic behavior. The results obtained correlated their catalytic activities with their carbon surface compositions. The application of these materials as active catalysts in the Kolbe–Schmitt reaction for CO2 conversion in aqueous media was proposed as an alternative reaction for the valorization of exhausts industrial effluents. In these early tests, the highest conversion of phenol was observed for the hybrid samples with the highest graphitic characteristic and the most hydrophobic behavior. Carboxylation products such as benzoic acid, p-hydroxybenzoic acid, and salicylic acid, have been identified under these experimental conditions.
Collapse
|