1
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
2
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
3
|
Noh S, Shin J, Lee J, Oh HM, Yu YT, Kim JS. Improvement in Photoelectrochemical Water Splitting Performance of GaN-nanowire Photoanode Using MXene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8016-8023. [PMID: 38294420 DOI: 10.1021/acsami.3c15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The photoelectrochemical water splitting (PEC-WS) performance of a photoanode consisting of GaN nanowires (NWs) is significantly improved using a Ti3C2-MXene coating as an intermediate layer to promote carrier transfer toward the electrolyte. The maximum current density and applied-bias photon-to-current efficiency of the photoanode comprising GaN NWs coated with Ti3C2-MXene (MGNWs) are measured to be 34.24 mA/cm2 and 14.47% at 1.2 and 0.4 V versus a reversible hydrogen electrode (RHE), respectively. These values are much higher than those of the GaN-NW photoanode without Ti3C2-MXene (4.04 mA/cm2 and 1.95%) and also markedly exceed those of previously reported photoanodes. After 8 days of PEC-WS, the current density was measured to be 31.07 mA/cm2, which corresponds to 97.58% of that measured immediately after the reaction started. Based on the time dependence of the current density, the hydrogen evolution rate over the reaction time is calculated to be 0.58 mmol/cm2·h. The results confirm that the PEC-WS performance of the optimized MGNW photoanode is superior to and more stable than those of previously reported photoanodes.
Collapse
Affiliation(s)
- Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jaehyeok Shin
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jinseong Lee
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hye Min Oh
- Department of Physics, Kunsan National University, Gunsan 54150, South Korea
| | - Yeon-Tae Yu
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
4
|
Rodrigues AV, Onishi BSD, Ribeiro SJL. Facile Formation of Sulfurized Nanorod-Like ZnO/Zn(OH) 2 and Hierarchical Flower-Like γ-Zn(OH) 2 /ϵ-Zn(OH) 2 from a Green Synthesis and Application as Luminescent Solar Concentrator. Chemphyschem 2023; 24:e202300134. [PMID: 37594478 DOI: 10.1002/cphc.202300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
This research endeavors to overcome the significant challenge of developing materials that simultaneously possess photostability and photosensitivity to UV-visible irradiation. Sulfurized nanorod (NR)-like ZnO/Zn(OH)2 and hierarchical flower-like γ-Zn(OH)2 /ϵ-Zn(OH)2 were identified from XRD diffraction patterns and Raman vibrational modes. The sulfurized material, observed by FEG-SEM and TEM, showed diameters ranging from 10 and 40 nm and lengths exceeding 200 nm. The S2- ions intercalated Zn2+ , modulating NRs to dumbbell-like microrods. SAED and HRTEM illustrated the atomic structure in (101) crystal plane. Its direct band gap of 3.0 eV was attributed to the oxygen vacancies, which also contribute to the deep-level emissions at 422 and 485 nm. BET indicated specific surface area of 4.4 m2 g-1 and pore size as mesoporosity, which are higher compared to the non-sulfurized analogue. These findings were consistent with the observed photocurrent, photostability and photoluminescence (PL), further supporting the suitability of sulfurized NR-like ZnO/Zn(OH)2 as a promising candidate for Luminescent solar concentrators (LSC)-photovoltaic (PV) system.
Collapse
Affiliation(s)
- Aline Varella Rodrigues
- Department of Analytical, Physical, and Inorganic Chemistry, Institute of Chemistry at São Paulo State UNESP University, Prof. Francisco Degni, n. 55, 14800-060, Araraquara-SP, Brazil
| | - Bruno Seiki Domingos Onishi
- Department of Analytical, Physical, and Inorganic Chemistry, Institute of Chemistry at São Paulo State UNESP University, Prof. Francisco Degni, n. 55, 14800-060, Araraquara-SP, Brazil
| | - Sidney José Lima Ribeiro
- Department of Analytical, Physical, and Inorganic Chemistry, Institute of Chemistry at São Paulo State UNESP University, Prof. Francisco Degni, n. 55, 14800-060, Araraquara-SP, Brazil
| |
Collapse
|
5
|
Hassen Y, Gedda G, Assen AH, Kabtamu DM, Girma WM. Dodonaea angustifolia Extract-Assisted Green Synthesis of the Cu 2O/Al 2O 3 Nanocomposite for Adsorption of Cd(II) from Water. ACS OMEGA 2023; 8:17209-17219. [PMID: 37214697 PMCID: PMC10193548 DOI: 10.1021/acsomega.3c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
The enhanced worldwide concern for the protection and safety of the environment has made the scientific community focus their devotion on novel and highly effective approaches to heavy metals such as cadmium (Cd) pollutant removal. In this research, Dodonaea angustifolia plant extract-mediated Al2O3 and Cu2O nanoparticle (NP) syntheses were accomplished using the coprecipitation method, and the Cu2O/Al2O3 nanocomposite was prepared by simple mixing of Cu2O and Al2O3 NPs for the removal of Cd(II) ions from aqueous solution. Therefore, an efficient green, economical, facile, and eco-friendly synthesis method was employed, which improved the aggregation of individual metal oxide NPs. The chemical and physical properties of the nanocomposite were examined by different characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the performances of the nanoadsorbents for the adsorptive eradication of Cd2+ ions from water were investigated. The influence of pH, contact time, initial Cd quantity, and nanocomposite amount on adsorption effectiveness was carefully studied. The adsorption rates of the Cu2O/Al2O3 nanocomposite were rapid, and adsorption equilibrium was attained within 60 min for 97.36% removal of Cd(II) from water. The adsorption isotherm data were best fitted by the pseudo-second-order kinetic and Langmuir isotherm models with the highest adsorption ability of 4.48 mg/g. Therefore, the synthesized Cu2O/Al2O3 nanocomposite could be a potential candidate for a highly efficient adsorbent for heavy metal ion removal from aqueous solutions.
Collapse
Affiliation(s)
- Yeshi
Endris Hassen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Gangaraju Gedda
- Department
of Chemistry, School of Engineering, Presidency
University, Bangalore 560064, Karnataka, India
| | - Ayalew H. Assen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Daniel Manaye Kabtamu
- Department
of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan 7260, Ethiopia
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wubshet Mekonnen Girma
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| |
Collapse
|
6
|
Talebi M, Dashtian K, Zare-Dorabei R, Amourizi F, Ghafuri H, Mahdavi M. Ruthenium-Encapsulated Porphyrinic Organic Polymer as a Photoresponsive Oxidoreductase Mimetic Nanozyme for Colorimetric Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7444-7455. [PMID: 37189015 DOI: 10.1021/acs.langmuir.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The advantages of porosity and stable unpaired electrons of porphyrinic organic polymers (POPs) with free radicals are exclusive and potentially practical functionalities and combining the semiconductor-like characteristics of these materials and metal ions has been an effective way to assemble an efficient photocatalytic system. Herein, a new ruthenium (Ru) ion-encapsulated porphyrinic organic polymer (POP/Ru) is facilely synthesized as a proper photoresponsive nanozyme with unique photo-oxidase properties. Surprisingly, the proposed POP/Ru revealed outstanding photoresponsive oxidase-mimicking activity due to the synergetic effect of the integration of Ru and π-electrons of POP, which boosts charge separation and transport. POP/Ru was applied to the oxidation of o-phenylenediamine (o-PDA) as a chromogenic probe for producing a colorimetric signal. The kinetic study reveals that these photo-oxidase mimics have a significant affinity for the o-PDA chromogenic agent owing to a lower Km and superior Vmax. Further findings demonstrate that the presence of the l-arginine (l-Arg) target causes an inhibition effect on the photo-nanozymatic colorimetry of POP/Ru. This research develops the applications of the comprehensive colorimetric strategy for ultrasensitive l-Arg monitoring with a limit of detection (LOD) of 15.2 nM in the dynamic range of 4.0 nM-340 μM and illuminates that the proposed photo-oxidase nanozyme as a visual strategy is feasible in l-Arg environmentally friendly colorimetric detection in juice samples.
Collapse
Affiliation(s)
- Maryam Talebi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| |
Collapse
|
7
|
Talebi M, Dashtian K, Zare-Dorabei R, Ghafuri H, Mahdavi M, Amourizi F. Photo-responsive oxidase-like nanozyme based on a vanadium-docked porphyrinic covalent organic framework for colorimetric L-Arginine sensing. Anal Chim Acta 2023; 1247:340924. [PMID: 36781249 DOI: 10.1016/j.aca.2023.340924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
This study reports the development of a vanadium-docked porphyrinic covalent organic framework as a novel class of highly polar photoactive materials. Thanks to its extended π-electron conjugation and high chemical stabilities, this framework can serve as an oxidase-Like photo-nanozyme for photocatalytic oxidation of o-phenylenediamine (o-PDA) and a colorimetric substrate for the production of the yellow-colored oxidized o-PDA (o-PDAox). The physicochemical properties of the as-prepared photo-nanozyme were characterized by several analytical techniques. Its enhanced light harvesting and charge separation and transfer were also verified by electrochemical and spectroscopic analysis. This photo-nonenzymatic colorimetric assay was applied for the sensitive L-Arginine (L-Arg) detection as a typical amino acid in the linear range of 8.1 nM-330 μM with a limit of detection (LOD) of 3.5 nM. The findings of this research confirmed the safety and feasibility of the proposed photo-nonenzymatic colorimetric sensing strategy for the detection of L-Arg and other similar biomolecules in food samples. Kinetic investigation revealed that the photo-responsive oxidase mimic exhibits satisfactory Km (0.47 mM) and Vmax (42.0 μM/s) values. This work broadened our insight into the development of modified porphyrinic-COF-based visible light-responsive oxidase-like photo-nanozyme for environmentally friendly colorimetric biosensing.
Collapse
Affiliation(s)
- Maryam Talebi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Hossein Ghafuri
- Biocatalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
8
|
Ren X, Zeng X, Wang Y, Liu X, Li A, Xing X, Du J. Integration of an Electron Transport Layer and a p‐n Heterojunction in a ZnO photoanode for Photoelectrochemical Water Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaofei Ren
- College of Chemistry Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Xuyang Zeng
- College of Chemistry Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Yanqiu Wang
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Xuzhao Liu
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Ang Li
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Xiu‐Shuang Xing
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Jimin Du
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| |
Collapse
|
9
|
Ghosh A, Shyamal S, Palui A, Manna RN, Mondal S, Jana M, Ghosh A, Bhaumik A. Photoelectrochemical Water Oxidation over Novel Semiconducting Zinc-Based Metal-Thiolate Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37699-37708. [PMID: 35960025 DOI: 10.1021/acsami.2c07737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing an efficient catalyst for a sustainable photoelectrochemical water oxidation reaction is very challenging in the context of renewable energy research. Here, we have introduced a new semiconducting porous zinc-thiolate framework via successful stitching of an "N" donor linker with a triazine-based tristhiolate secondary building unit in the overall architecture. The introduction of both linker and tristhiolate ligand synergistically modifies the architecture by making it a rigid, crystalline, three-dimensional, thermally stable, and porous framework. Our novel zinc-thiolate framework is used as an n-type semiconductor as revealed from the solid-state UV-vis DRS spectroscopic analysis, ac and dc conductivity analysis, and Mott-Schottky plot. This n-type semiconductor-based zinc-thiolate framework is utilized in the photoelectrochemical water oxidation reaction. It displayed a very high efficiency for a visible-light-driven oxygen evolution reaction (OER) in a KOH medium using standard Ag/AgCl as the reference electrode. The superiority of this material was further revealed from the low onset potential (0.822 mV vs RHE), high photocurrent density (0.204 mA cm-2), good stability, and high O2 evolution rate (77 μmol g-1 of oxygen evolution within 2 h), and a good efficiency (ABPE 0.42%, IPCE 29.6% and APCE 34.5%). Furthermore, the porosity in the overall framework seems to be a blessing to the photoelectrochemical performance due to better mass diffusion of the electrolyte. A detailed mechanism for the OER reaction was analyzed through density functional theory analysis suggesting the potential future of this Zn-thiolate framework for achieving a high efficiency in the sustainable water oxidation reaction.
Collapse
Affiliation(s)
- Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Palui
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manish Jana
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Sarkar S, Sarkar S, Patra AK. Single crystalline manganite (γ‒MnOOH) rods enclosed with high index facets and its excellent catalytic conversion of Lignin‒Derived feedstock. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Chatterjee S, Shaymal S, Mukherjee M, Halder D, Chongdar S, Paul A, Bhaumik A. Metal-Thiolate Framework for Electrochemical and Photoelectrochemical Hydrogen Generation. CHEMSUSCHEM 2022; 15:e202200114. [PMID: 35293679 DOI: 10.1002/cssc.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen has evolved as the cleanest and most sustainable fuel, produced directly from naturally abundant water resources. Generation of hydrogen by electrochemical or photoelectrochemical splitting of water has been conceived as the most effective method for hydrogen production. Herein, a robust solid metal-thiolate framework (MTF-1) was obtained by hydrothermal crystallization of the reaction mixture consisting of 1,3,5-triazine-2,4,6-trithioltrisodium salt and CuII under mild synthesis conditions. The material was thoroughly characterized and explored as efficient catalyst for electrochemical and photoelectrochemical hydrogen evolution reaction (HER) via water splitting reactions. MTF-1 showed onset potential 0.045 VRHE and overpotential η(@10 mA cm-2 ) at 0.096 VRHE . The electrochemical surface area of MTF-1 was found to be 509 m2 g-1 . The photo current density at pH 5.0 was found to be 0.487 mA cm-2 at 0.6 VRHE . The feasibility of the reaction pathway was correlated from the density function theory study, which suggested the complete downhill energetics indicating spontaneous electrochemical hydrogen generation in the acidic medium.
Collapse
Affiliation(s)
- Sauvik Chatterjee
- School of Materials Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sanjib Shaymal
- School of Materials Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Manjistha Mukherjee
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Debabrata Halder
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sayantan Chongdar
- School of Materials Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
12
|
Li F, Sun M, Zhou B, Zhu B, Yan T, Du B, Shao Y. Z-scheme bismuth-rich bismuth oxide iodide/bismuth oxide bromide hybrids with novel spatial structure: Efficient photocatalytic degradation of phenolic contaminants accelerated by in situ generated redox mediators. J Colloid Interface Sci 2022; 614:233-246. [DOI: 10.1016/j.jcis.2022.01.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/12/2023]
|
13
|
Ai X, Yan S, Ma L. Morphologically Controllable Hierarchical ZnO Microspheres Catalyst and Its Photocatalytic Activity. NANOMATERIALS 2022; 12:nano12071124. [PMID: 35407242 PMCID: PMC9000615 DOI: 10.3390/nano12071124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
The degradation of pollutants in wastewater using abundant resources and renewable energy sources, such as light, is attractive from an environmental perspective. ZnO is a well-known photocatalytic material. Therefore, in this study, a hierarchical ZnO microsphere precursor was prepared using a hydrothermal method. The precursor was subsequently annealed at different temperatures, which enabled the production of a ZnO catalyst having a controllable morphology. Specifically, as the annealing temperature increased, the precursor crystallized into hexagonal wurtzite and the crystallinity also increased. The catalysts were tested for their photocatalytic activity for the degradation of dye molecules (methylene blue and rhodamine B), and the catalyst sample annealed at 400 °C showed the best photocatalytic activity. The origin of this activity was studied using electron paramagnetic resonance spectroscopy and transient photocurrent measurements, and the structure of the optimal catalyst was invested using electron microscopy measurements, which revealed that it was formed of two-dimensional nanosheets having smooth surfaces, forming a 2D cellular network. Thus, we have presented a promising photocatalyst for the mineralization of organic contaminants in wastewater.
Collapse
Affiliation(s)
- Xiaoqian Ai
- College of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013, China;
| | - Shun Yan
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China;
| | - Ligang Ma
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China;
- Correspondence:
| |
Collapse
|
14
|
Chakraborty D, Ghorai A, Bhanja P, Banerjee S, Bhaumik A. High proton conductivity in a charge carrier-induced Ni(ii) metal–organic framework. NEW J CHEM 2022. [DOI: 10.1039/d1nj04685c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new tetradentate phosphonate ligand-based Ni-MOF has been synthesized and employed as an efficient proton-conducting material upon doping with sulphuric acid.
Collapse
Affiliation(s)
- Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arijit Ghorai
- Materials Science Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Piyali Bhanja
- Materials Chemistry Division, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Chongdar S, Bhattacharjee S, Bhanja P, Bhaumik A. Porous organic-inorganic hybrid materials for catalysis, energy and environmental applications. Chem Commun (Camb) 2022; 58:3429-3460. [DOI: 10.1039/d1cc06340e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of organic functionalities into the porous inorganic materials make the resulting hybrid porous framework not only more flexible and hydrophobic, but also provide additional scope for further functionalization, which...
Collapse
|
16
|
Andriani A, Benu DP, Megantari V, Yuliarto B, Mukti RR, Ide Y, Chowdhury S, A. Amin M, Kaneti Y, Suendo V. Role of Urea on Structural, Textural, and Optical Properties of Macroemulsion-assisted Synthesized Holey ZnO Nanosheets for Photocatalytic Applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00184e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a macroemulsion-assisted solvothermal method, the present study produces holey ZnO nanosheets exhibiting the hexagonal wurtzite crystal structure. In the synthetic process, urea is employed as a hydrolyzing agent. Its...
Collapse
|
17
|
Photodegradation Attenuated Oscillation:A Novel Photocatalytic Characteristic for the Polymetallic Oxide Semiconductor Porous Materials with Energy Bandgap Gradient. ChemistrySelect 2021. [DOI: 10.1002/slct.202101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Gao S, Zhang P, Huang G, Chen Q, Bi J, Wu L. Band Gap Tuning of Covalent Triazine-Based Frameworks through Iron Doping for Visible-Light-Driven Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2021; 14:3850-3857. [PMID: 34347379 DOI: 10.1002/cssc.202101308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic hydrogen energy production through water splitting paves a promising pathway for alleviating the increasingly severe energy crisis. Seeking affordable, highly active, and stable photocatalysts is crucial to access the technology in a sustainable manner. Herein, a trivalent iron-doped covalent triazine-based framework (CTF-1) was elaborately designed in this study to finely tune the band structure and photocatalytic activity of CTF-1 for H2 production. With optimal doping amount, Fe10 /CTF-1 exhibited a satisfying H2 production activity of 1460 μmol h-1 g-1 , corresponding to 28-fold enhancement compared with pure CTF-1. The Fe3+ doping is responsible for a remarkedly broadened visible-light adsorption range, improved reduction ability and inhibited electron-hole recombination of CTF-1. Specifically, the doped Fe3+ could serve as photocatalytically active center and "electron relay" to accelerate charge separation and transformation. This study offers a feasible strategy to validly design and synthesize CTF-based photocatalytic materials to efficiently utilize solar energy.
Collapse
Affiliation(s)
- Shengjie Gao
- Department of Environmental Science and Engineering, Fuzhou University Minhou, Fujian, 350108, P. R. China
| | - Peng Zhang
- Department of Environmental Science and Engineering, Fuzhou University Minhou, Fujian, 350108, P. R. China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University Minhou, Fujian, 350108, P. R. China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University Minhou, Fujian, 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University Minhou, Fujian, 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Minhou, Fujian, 350108, P. R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Minhou, Fujian, 350108, P. R. China
| |
Collapse
|
19
|
Rational modulation for electron migration in CdS/Au/TiO2 photoanode for efficient photoelectrochemical water oxidation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Chatterjee S, Palui A, Chongdar S, Roy S, Ghosh A, Bhaumik A. Transformation of Wurtzite ZnO to a New Triclinic Nanoporous ZnO Phase via Hydrothermal Treatment with Metformin for Designing Proton Conducting Material. Chem Asian J 2021; 16:2261-2266. [PMID: 34173711 DOI: 10.1002/asia.202100601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Zinc oxide is one of the most widely studied semiconductor metal oxides, which predominantly crystallizes as hexagonal wurtzite and often cubic zinc-blende phases. Here we report the transformation of the highly stable wurtzite ZnO to a new triclinic phase NZO-2 by using metformin as a template during post-synthesis hydrothermal treatment. This crystalline phase of the material NZO-2 has been identified through the refinement of the powder XRD data. NZO-2 possesses porous rod like particle morphology consisting of the self-assembly of 3-7 nm size spherical nanoparticles and interparticle nanoscopic voids spaces. NZO-2 has been surface phosphorylated and the resulting material displayed good proton conductivity. Further, NZO-2 displayed ultra-low band gap of 1.74 eV, thereby responsible for red emission under high energy laser excitation and this may open new opportunities in optoelectronic application of ZnO.
Collapse
Affiliation(s)
- Sauvik Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Arnab Palui
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sayantan Chongdar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Shyamal Roy
- Chemical Engineering Department, Jadavpur University, Kolkata, 700032, India
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
21
|
Abstract
The preparation of tungsten oxide (WO3) thin film by direct current (DC) reactive sputtering magnetron method and its photoelectrocatalytic properties for water oxidation reaction are investigated using ultraviolet-visible radiation. The structural, morphological, and compositional properties of WO3 are fine-tuned by controlling thin film deposition time, and post-annealing temperature and environment. The findings suggest that the band gap of WO3 can be controlled by adjusting the post-annealing temperature; the band gap decreased from 3.2 to 2.7 eV by increasing the annealing temperature from 100 to 600 °C. The theoretical calculations of the WO3 bandgap and the density of state are performed by density functional theory (DFT). Following the band gap modification, the photoelectrocatalytic activity increased and the maximum photocurrent (0.9 mA/cm2 at 0.6 VSCE) is recorded with WO3 film heated at 500 °C. The WO3 film heated under air exhibits much better performance in photoelectrochemical water oxidation process than that of annealed under inert atmosphere, due to its structural variation. The change in sputtering time leads to the formation of WO3 with varying film thickness, and the maximum photocurrent is observed when the film thickness is approximately 150 nm. The electrical conductivity and charge transfer resistance are measured and correlated to the properties and the performance of the WO3 photoelectrodes. In addition, the WO3 photoelectrode exhibits excellent photoelectrochemical stability.
Collapse
|
22
|
Barui AK, Nethi SK, Basuthakur P, Jhelum P, Bollu VS, Reddy BR, Chakravarty S, Patra CR. Therapeutic angiogenesis using zinc oxide nanoflowers for the treatment of hind limb ischemia in rat model. Biomed Mater 2021; 16. [PMID: 33657534 DOI: 10.1088/1748-605x/abebd1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
Critical limb ischemia (CLI) is considered as a severe type of peripheral artery diseases (PADs) which occurs due to the inadequate supply of blood to the limb extremities. CLI patients often suffer from extreme cramping pain, impaired wound healing, immobility, cardiovascular complications, amputation of the affected limb and even death. The conventional therapy for the treatment of CLI includes surgical revascularization as well as restoring angiogenesis using growth factor therapy. However, surgical revascularization is suitable for only a minor percentage of CLI patients and it is associated with high perioperative mortality rate. The use of growth factors is also limited in terms of their poor therapeutic angiogenesis potential as observed by the earlier clinical studies, which could be attributed to their poor bio-availability and non-specificity issues. Therefore, to outweigh the aforesaid disadvantages of the conventional strategies, there is an utmost need for the advancement of new alternative therapeutic biomaterials to treat CLI. Since past few decades, various research groups including ours have been involved in developing different pro-angiogenic nanomaterials. Among them, zinc oxide nanoflowers (ZONF), established in our laboratory, are considered as one of the potent nanoparticles to induce therapeutic angiogenesis. In our earlier studies, we have depicted that ZONF promote angiogenesis by inducing the formation of reactive oxygen species (ROS) and nitric oxide (NO) as well as activating Akt/MAPK/eNOS cell signaling pathways in the endothelial cells. Recently, we have also reported the therapeutic potential of ZONF to treat cerebral ischemia through their neuritogenic and neuroprotective properties, exploiting angio-neural cross talk. Considering the excellent pro-angiogenic properties of ZONF and importance of revascularization for the recovery of CLI, in this present study, we have comprehensively explored the therapeutic potential of ZONF in a rat hind limb ischemia model (established by ligating the femoral artery of hind limb), an animal model that mimics CLI in humans. The behavioural studies, laser Doppler perfusion imaging, histopathology, immunofluorescence as well as estimation of serum NO level depicted that the administration of ZONF could ameliorate the ischemic conditions in rats at a faster rate by promoting therapeutic angiogenesis to the ischemic sites. Altogether, the present study offers an alternative nanomedicine approach employing ZONF for the treatment of PADs.
Collapse
Affiliation(s)
- Ayan Kumar Barui
- Biomaterials Group, LST division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Hyderabad, Telangana, 500007, INDIA
| | - Susheel Kumar Nethi
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| | - Papia Basuthakur
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| | - Priya Jhelum
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| | - Vishnu Sravan Bollu
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| | - Bommana Raghunath Reddy
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| | - Sumana Chakravarty
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| | - Chitta Ranjan Patra
- Biomaterials Group, LST Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, AP, Hyderabad, Andhra Pradesh, 500007, INDIA
| |
Collapse
|
23
|
Han S, Noh S, Yu YT, Lee CR, Lee SK, Kim JS. Highly Efficient Photoelectrochemical Water Splitting Using GaN-Nanowire Photoanode with Tungsten Sulfides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58028-58037. [PMID: 33337852 DOI: 10.1021/acsami.0c17811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, we have achieved high-performance photoelectrochemical water splitting (PEC-WS) using GaN nanowires (NWs) coated with tungsten sulfide (WxS1-x) (GaN-NW-WxS1-x) as a photoanode. The measured current density and applied-bias photon-to-current efficiency were 20.38 mA/cm2 and 13.76%, respectively. These values were much higher than those reported previously for photoanodes with any kind of III-nitride nanostructure. The amount of hydrogen gas formed was 1.01 mmol/cm2 from 7 h PEC-WS, which was also much higher than the previously reported values. The drastic improvement in the PEC-WS performance using the GaN-NW-WxS1-x photoanode was attributed to an increase in the number of photogenerated carriers due to the highly crystalline GaN NWs, and acceleration of separation of photogenerated carriers and consequent suppression of charge recombination because of nitrogen-terminated surfaces of NWs, sulfur vacancies in WxS1-x, and type-II band alignment between NW and WxS1-x. The degree of impedance matching, evaluated from Nyquist plots, was considered to analyze charge transfer characteristics at the interface between the GaN-NW-WxS1-x photoanode and 0.5-M H2SO4 electrolyte. Considering the material system and scheme for the PEC-WS, our approach provides an efficient way to improve hydrogen evolution reaction.
Collapse
Affiliation(s)
- Sangmoon Han
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Yeon-Tae Yu
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheul-Ro Lee
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Seoung-Ki Lee
- Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Wanju 55324, South Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|